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study the e�ectiveness of retractions in correcting beliefs. Our experimental design

identi�es belief updating from retractions—the revoking of earlier information—and

compares it to updating from equivalent new information. Retractions are ine�ective:

subjects update approximately one-third less from them versus both the retracted evi-

dence and informationally-equivalent new evidence. Although we document several

well-known biases in belief updating, our results require an explanation that treats

retractions as intrinsically di�erent. We �nd evidence for one such mechanism, while

ruling out several others: retractions, information about information, are inherently

more complex than direct information.
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1. INTRODUCTION

Retracted information o�en continues to in�uence beliefs, even once widely discredited. Baseless
rumors, mistaken earnings announcements, fraudulent research �ndings, false claims of politicians;
all tend to linger long a�er being debunked. Why is it so frequently easier to learn (incorrect)
information than to subsequently “unlearn” it? While context-speci�c explanations for such
retraction failures have been proposed across a variety of instances, their apparent ubiquity
suggests a general underlying mechanism. Are retraction failures simply known failures of belief
updating, such as con�rmation bias, or is there something speci�c to the nature of retractions?

In this paper, we demonstrate that people underinfer from retractions relative to direct evidence
and propose and �nd support for one mechanism, while ruling out many others: retractions—by
their nature, information about information—are inherently more complex than direct evidence.
First, we conduct a pre-registered experiment to quantify the degree to which retractions are less
e�ective than direct evidence and to distinguish this �nding from other belief updating biases.
Second, we �nd that complexity plays a role in retraction failures by showing that updating from
retractions is associated with common complexity indicators—longer response times and higher
variability in responses. �ird, we perform extensive robustness checks to assess and ultimately
dismiss other possible explanations.

To this end, we rely on a canonical experimental design to identify and quantify retraction
failures absent a variety of idiosyncratic confounds. Speci�cally, we develop a variation on
the classic balls-and-urns experiment which is widely used to study limitations in information
processing, for example in belief updating (Benjamin, 2019; �aler, 2021; Ba, Bohren, and Imas,
2022), social learning (Anderson and Holt, 1997; Weizsäcker, 2010), and asset pricing (Halim,
Riyanto, and Roy, 2019). Importantly, our design allows us to repeatedly provide retractions that
are informationally equivalent to new observations, to subjects facing identical problems and
sharing the same prior beliefs—aspects which are crucial to distinguish the e�ect of retractions
from equivalent new information.

To study retractions, we modify the canonical balls-and-urns design as follows. Subjects are
presented with draws of colored balls (blue or yellow) from a box with replacement, with one
color being more likely depending on an underlying state. �e box contains a “truth ball” which
is either yellow or blue—the underlying state, over which we elicit subjects’ beliefs—and “noise
balls” in equal proportion. A�er presenting subjects with a series of such draws, in which they
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are told the color but not the truth/noise status of each ball, we then either present another such
draw, or inform subjects whether a randomly chosen earlier ball draw was the truth ball or a noise
ball. We refer to this la�er event—when an earlier draw is disclosed to be a noise ball and thus
uninformative of the underlying state—as a retraction. Eliciting beliefs on the underlying state, we
test for retraction e�ectiveness by comparing beliefs following retractions to (a) beliefs without
having observed the retracted observation in the �rst place, and to (b) beliefs following new draws
with identical Bayes updates (in our setup, a draw of the opposite color to the retracted one).

Our �rst result identi�es and quanti�es retraction ine�ectiveness as distinct from other belief
updating biases. Subjects update less from retractions than from either (a) the retracted observation
or (b) a new informationally-equivalent observation. Both results are robust across multiple
variants of the experiment and hold regardless of details of the retraction; for example, whether
information is con�rmatory, or whether priors are more moderate or more extreme. �e magnitude
of retraction failures is large: beliefs update on average one-third less from retractions versus
observations (see Section 5.3). In our theoretical analysis, we consider a general class of quasi-
Bayesian models (which nests Bayesian updating—see Section 2.1 for a formal de�nition), and
highlight that our results cannot be reconciled with any explanation that does not treat retractions
as inherently di�erent. �is includes widely documented deviations from Bayesian updating such
as base-rate neglect and con�rmation bias, that our experiment replicates (see Benjamin (2019)
for an authoritative survey).

Why are retractions less e�ective? We propose that retractions—information about information—
are inherently more complex than direct information about the state, since they require additional
contingent reasoning. Our proposed mechanism is motivated by two recent literatures: one
showing that the need to consider more contingencies aggravates probabilistic errors in various
domains (Ali, Mihm, Siga, and Tergiman, 2021; Esponda and Vespa, 2014, 2021; Martı́nez-Marquina,
Niederle, and Vespa, 2019), and the other proposing that complexity considerations explain a
number of well-documented behavioral biases (Oprea, 2020, 2022; Ba, Bohren, and Imas, 2022;
Enke, Graeber, and Oprea, 2023).

To test this proposed mechanism, we take two approaches. First, we provide direct evidence that
updating from retractions is harder, by considering process data and behavioral traits previously
used in the literature to measure complexity of decision making. Second, we consider two instances
where belief updating from or a�er retractions is intuitively more di�cult, show that our behavioral
markers con�rm that the updating task is more complex in those instances, and then test whether
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updating strength following retractions changes as predicted by the complexity explanation.
�e two behavioral markers of the complexity of an updating task we consider are decision

times and the variability of belief reports, both of which have been used as measures of cognitive
noise in past work—see e.g. Krajbich et al. (2012); Frydman and Jin (2022) for the former and Khaw
et al. (2021) for the la�er. Both proxies are larger when updating from retractions, as compared
to equivalent new information, with updating taking 10% longer and leading to more than a
one-third increase in variance. So, while previously we showed that updating is less e�ective
from retractions than from equivalent direct evidence, these results suggest that it is also more
cognitively demanding.

We examine how updating a�er retractions varies with complexity by leveraging natural
variation in complexity provided by our design. Speci�cally, we compare belief updating (1)
from retractions when earlier versus more recent observations are retracted, and (2) from new
observations when there has versus has not already been a retraction. For (1), we argue that when
the most recent observation is retracted, updating from a retraction is easier, since it requires
simply returning to the previous belief. For (2), we suspect that if it is harder to update from
retractions, it may also be harder to update from new observations following retractions, which
we test by comparing updating when there was a previous retraction to when instead there was a
previous informationally equivalent new observation. In both cases, our behavioral markers are
aligned. Decision times are longer and belief variability larger: (1) when retractions do not refer
to the most recent observation, and (2) when updating from new observations a�er observing
a retraction. Correspondingly, subjects update less: (1) from retractions which do not refer to
the most recent observation, and (2) from new observations if they have previously observed a
retraction. Taken together, this evidence is consistent with our proposed mechanism and also
supports our proxy measures for complexity.

We also consider alternative mechanisms in which retractions are treated inherently di�erently,
and which could thus potentially explain our results. First, we document that the ine�ectiveness of
retractions is not caused by retractions exacerbating con�rmation bias. In fact, they �ip it: when
updating from new observations, subjects slightly overinfer and do so more when observations
con�rm the prior—indicating con�rmation bias—whereas when updating from retractions they
underinfer and exhibit anti-con�rmation bias. While this thus cannot explain the ine�ectiveness
of retractions, it again underlines how retractions are treated fundamentally di�erently than new
observations, despite being informationally equivalent in our se�ing.
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Second, we study whether our �ndings are driven by information being hard to disregard
once it has been “acted” upon, as would be suggested by a cognitive dissonance explanation. If so,
the ine�ectiveness of retractions could be due to subjects having previously used the retracted
observations to state their beliefs, before the retraction. To test this, we randomly assign subjects
to a treatment arm of the experiment where we only elicit beliefs at the end of a sequence of
observations and retractions, rather than a�er each draw. We fail to reject the hypothesis that
retractions have the same e�ect on belief updating as in our baseline setup.

Finally, we test whether our results simply re�ect some limited understanding of the subjects
regarding the data generating process. We are able to rule out misinterpreting that the draws are
made with replacement. We also consider removing subjects who are ‘noisy’ or prone to mistakes
(e.g. updating in the wrong direction), or who did not correctly answer at �rst try unincentivized
comprehension questions. A theme that emerges is that our results are stronger when restricting
to subjects who appear to have understood the task be�er.1 We conclude that our �ndings are
not an artifact of some consistent misinterpretation of the design. Although we are not powered
for a fully-�edged within-subject analysis, inspection of individual heterogeneity in our results
indicates that the ine�ectiveness of retractions compared with new observations is a general
phenomenon in our sample.

Related to retraction failures is the idea that discredited information may retain a residual
impact, known in psychology as the continued in�uence e�ect (see e.g. Johnson and Seifert, 1994;
Ecker et al., 2022). Lewandowsky et al. (2012) surveys this literature and highlights several
explanations; none appear capable of explaining our results, given our design. To the best of
our knowledge, all past experiments on retractions involve information that is (at least partially)
subjective, and leave open the possibility that subjects are interpreting them correctly within their
subjective worldview. Further, our theoretical framework highlights that in some implementations
of retractions, Bayesian updating should not entail simply “deleting” the retracted evidence.
Moreover, since equivalent new information is not presented in these experiments, they do not
separately identify retraction failures from other well-known biases, such as con�rmation bias.
Our contribution relative to this literature is to focus on a se�ing with objective probability
1�is is perhaps unsurprising, since to �nd any e�ect requires subjects to act di�erently for retractions; if subjects
answered randomly or always answer 50-50 we would not document any di�erence. In contrast, it is worth
emphasizing that most of our sample did very well on unincentivized comprehension questions, con�rming our
assertion that our design achieved its desired simplicity despite also containing su�cient richness to de�ne retractions
and speak to mechanisms.
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assessments, in a “context-free” se�ing where retractions can be compared to equivalent direct
evidence. Such updating from retractions—or information about information in general—appears
relatively unexplored in economics.

Our results are both of practical value and theoretical interest. We designed the experiment to
provide the �rst evidence that retraction failures could be a�ributed (at least in part) to errors in
information processing. From a theoretical standpoint, our �ndings motivate the development
of theoretical models of costly information processing that treat information about information
di�erently from direct information, even when their informational content is the same. From a
practical standpoint, our analysis provide guidelines regarding how and when individuals can
be expected to update beliefs with information about information, of potential relevance for
campaigns targeting misinformation.2 �e fact that retraction failures arise from an information
processing error suggest limits to the “this time is di�erent” logic policymakers may adopt—it
is in general unreasonable to expect a retraction to result simply in the “deletion” of a piece of
information. We suspect that in many real-world cases, appreciating the inability to correct beliefs
with retractions ex-post would have changed the calculus regarding decisions to disseminate
information ex-ante.3

A�er presenting our theoretical framework in Section 2, Section 3 lists our main hypotheses
and Section 4 presents our experimental design and implementation. Our analysis follows in three
parts: Section 5 documents retraction failures, Section 6 examines mechanisms (both our main
proposal and others), and Section 7 discusses robustness. Section 8 concludes.

2. FRAMEWORK

�is section presents formal de�nitions and includes our main framework. We establish two
key points which play a role in our subsequent analysis. First, we highlight the equivalences
between retractions and new draws in terms of (quasi-)Bayesian updates. Second, we illustrate
how complexity, response times, belief variances, and updating should relate to one another, which
we use in analyzing our mechanism.
2In this sense, our paper is part of a sizable literature which, while motivated by anecdotal or domain-speci�c evidence
of biases, utilizes basic belief updating tasks to highlight a relevant theoretical mechanism; see e.g. Oprea and Yuksel
(2022), Esponda, Oprea, and Yuksel (2022), Hartzmark, Hirshman, and Imas (2021), or Agranov et al. (2022).

3We do not speak to issues of how these biases interplay with information preferences, although this might in�uence
some of these decisions in practice; see Masatlioglu, Orhun, and Raymond (2021), Gul, Natenzon, and Pesendorfer
(2021), Ambuehl and Li (2018) or Charness, Oprea, and Yuksel (2021) for papers studying this element.
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2.1. Updating Beliefs from New Observations

We consider a decisionmaker who forms beliefs over a state θ, which takes one of two values
with equal probability, say θ ∈ {−1, 1}. At time t, the decisionmaker observes st ∈ {−1, 1},
informative of the state θ and independent conditional on θ. �roughout, we use the term “signal”
as a generic term for information, and “observation” or “draw” for signals st that provide direct

information about the state. We use P (·) to denote objective probabilities associated with the data
generating process, and b(θ | ·) to denote the decisionmaker’s subjective beliefs about the state.

Each observation st can either be true, in which case st = θ, or noise, in which case it is given
by an independent εt. Denoting the former event by {nt = 0} and the la�er by {nt = 1},

st = (1− nt) · θ + nt · εt, (1)

where nt ∈ {0, 1} and nt, εt and θ are independent. For simplicity, we write St = {s1, . . . , st}.
For a Bayesian, b(θ | St) = P (θ | St). Past work has routinely rejected this hypothesis.

One way to test for deviations from Bayesian updating (see Benjamin, 2019) is to note that log-
odds updates are constant when observations are identically distributed; that is, if K(st+1) =

log (P (st+1|θ)/P (st+1| − θ)); then for a Bayesian decisionmaker the following equation

log

(
b(θ | St+1)

b(−θ | St+1)

)
= α log

(
b(θ | St)
b(−θ | St)

)
+ βK(st+1), (2)

should hold for α = 1 and β = 1. Base rate neglect, for instance, corresponds to the hypothesis
that α < 1; underinference corresponds to the hypothesis that β < 1.

Since at least Kahneman and Tversky (1979), a common alternative is to instead assume there
is a strictly increasing probability weighting function f such that

b(θ | St) = f(P (θ | St)).

Even if α 6= 1 or β 6= 1, as long as f is strictly increasing, it is invertible, so f−1(b(θ | ·)) = P (θ | ·).
It then follows that b(θ | ·) is given by the following identity:

log

(
f−1(b(θ | St+1))

f−1(b(−θ | St+1))

)
= log

(
f−1(b(θ | St))
f−1(b(−θ | St))

)
+K(st+1), (3)

As long as some f exists such that b(θ | ·) = f(P (θ | ·)), one could recover f by using (3). Inspired
by Cripps’s (2021) axiomatic work, we call such a decisionmaker “quasi-Bayesian:’
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De�nition 1. We say that a decisionmaker is a “quasi-Bayesian” if there exists a strictly increasing f

such that b(θ | s) can be derived from b(θ) by (i) computing f−1(b(θ)), (ii) determining f−1(b(θ | s))
using (3), and (iii) composing the result with f to obtain b(θ | s).

Note that, to accommodate some forms of con�rmation bias, it may be necessary to allow the
function f to depend on the initial belief b(θ) subjects update from; we strive to be as agnostic as
possible and our comparisons will hold across a number of possible assumptions.

Updating rules satisfying this requirement are commonly used in experimental work (e.g.
Angrisani et al., 2021). Among possible microfoundations for such distortion is the hypothesis
that the agent faces some cognitive imprecision, as posited by models of cognitive uncertainty,
e�cient coding, and sequential sampling.4 In the spirit of the models in this literature, consider a
situation in which our decisionmaker faces uncertainty about how to interpret the likelihood of
evidence st+1 and update beliefs. Suppose the decisionmaker’s prior is given byK(st) ∼ N (0, σ2),
and that by deliberating the decisionmaker obtains n estimates K(st+1) + σζ · ζi with additive
Gaussian noise ζi ∼ N (0, 1), until becoming su�ciently certain about K(st+1).5 �is yields
posterior log-odds updates similar to the above:

log

(
b(θ | St+1)

b(−θ | St+1)

)
= log

(
b(θ | St)
b(−θ | St)

)
+ βK(st+1) + β

σζ√
n
ζi,

with β =
σ2

σ2
ζ/n+ σ2

. It is then possible to characterize the agent’s expected posterior belief by

a probability weighting function such that b(θ | ·) = f(P (θ | ·)), with underinference being
intrinsically associated to the agent’s cognitive uncertainty.

As a prelude to our analysis of mechanisms later, we highlight some testable predictions that
emerge. Suppose one �nds that β decreases in the above equation. According to this model, this
could be generated by (a) a decrease in n, (b) an increase in σζ , or (c) a decrease in σ. A standard
approach in the literature associates n with response time, the idea being that the decisionmaker
obtains one such signal per unit of time spent deliberating (see footnote 4). �is rationalizes the
4 While distinct, the literatures are closely related. E�cient coding (Wei and Stocker, 2015) and cognitive uncertainty
models have been increasingly popular in economics; e.g. Khaw et al. (2021), Frydman and Jin (2022), Enke and
Graeber (2020), and �aler (2021). Models of sequential sampling provide a relationship between cognitive uncertainty
and time through evidence accumulation (Krajbich et al., 2010; Bhui and Gershman, 2018). See Ratcli� et al. (2016)
for a survey of sequential sampling models in psychology and neuroscience, and Fudenberg et al. (2018), Alós-Ferrer
et al. (2018), and Gonçalves (2022) for recent applications in economics.

5Since the purpose of this formalism is to �x ideas about existing concepts and relate cognitive uncertainty with
“quasi-Bayesian” updating, we purposefully leave the threshold for ‘su�cient certainty’ as exogenous.
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general �nding that decisionmakers take more time on simple tasks when these tasks become less
immediately apparent.6,7

2.2. Updating Beliefs from Retractions

We now turn to updating from retractions, highlighting subtleties that emerge in pursuit of showing
that retractions are treated fundamentally di�erently from other information. Formally:

De�nition 2. Consider the data-generating process described in (1). A retraction at time t consists

in informing the decisionmaker that nτ = 1, thus implying the observation sτ was noise.

For reasons described below, we focus on the following:

De�nition 3. A verifying retraction is a retraction in which {τ = `} is independent from other

observations’ truth value, ` ≤ t.

In our experiment, this is implemented by selecting τ uniformly at random from {1, ..., t} and
subsequently revealing nτ to the decisionmaker; that is, whether this observation is noise or
not.8 Note that a Bayesian decisionmaker should be able to follow Bayes rule and update beliefs
following retractions without any ambiguity.9

�e following result relates the following three quantities, our main comparisons in the paper:

(1) b(θ|St, nτ = 1), the decisionmaker’s belief a�er observing the retraction nτ = 1;
(2) b(θ|St \sτ ), the decisionmaker’s belief had the retracted observation sτ never been observed.
(3) b(θ|St ∪ st+1), the decisionmaker’s belief a�er observing a new observation st+1 instead of

the retraction

Proposition 1. Suppose retractions are verifying. For any quasi-Bayesian updating rule with a �xed

(initial-belief independent) f , as described in De�nition 1, (1) and (2) are identical. Moreover, given

any (possibly initial-belief dependent) quasi-Bayesian updating rule f , (1) and (3) are identical if and

only if its loglikelihood is negative of the retracted observation,K(st+1) = −K(sτ ).
6Early versions of these results can be found in, for instance, Banks et al. (1976), Buckley and Gillman (1974), or
Ratcli� (1978); to our knowledge, scienti�c consensus accepts the basic �nding.

7We note that to conclude that updating is harder at a given history, it is necessary to compare jointly how β
(responsiveness to beliefs), n (reaction time), and σζ√

n
(belief variance). At a given history—so that σ is �xed—in

order to rationalize (a) increase in n given (b) a decrease in β, it must also be the case that (c) σζ/
√
n increases.

8Note that this implies that when nτ = 0, the decisionmaker learns their past information was actually true and, in
the current se�ing, this would result in degenerate Bayesian posterior beliefs.

9�is lack of ambiguity distinguishes our experiment from Liang (2020), Shishkin and Ortoleva (2021), and Epstein
and Halevy (2020).
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�e proof of this proposition essentially follows from a careful application of Bayes rule and
observing that quasi-Bayesian updating rules still satisfy this identity under the transformation
f−1. An identical argument could be used to introduce additional history dependence into the
updating rule; our identi�cation strategy below would remain valid. But while one may wish to
entertain a variety of models to accommodate a plethora of biases, any di�erences between (1) and
(2) or (3) in our experimental setup will require retractions to be treated as intrinsically di�erent.

Our hypothesis will be that, when the updating task is harder, subjects experience higher
cognitive uncertainty about how to update beliefs, resulting beliefs being less a�ected by informa-
tion on average (i.e. smaller expected changes in beliefs b(θ|St+1)− b(θ|St)), and higher variance
in belief updates.10 �is association between noise in belief updating, decision time, and task
di�culty has been noted before and is in line with the literatures on cognitive uncertainty, e�cient
coding, and sequential sampling models, and their empirical �ndings (see, e.g. Frydman and Jin,
2022; Frydman and Nunnari, 2022). We return to these predictions in the following section, when
discussing our hypotheses.

Our focus on verifying retractions makes it simplest for subjects to update correctly. �is
stands in contrast to other setups, in which subjects need to account for how signals provided by
an information structure are restricted, a feature that Miller and Sanjurjo (2019) argue is responsible
for mistakes in probabilistic reasoning.11 While a retraction reveals that a give observation does
not correspond to the state, our implementation of retractions is unrestricted, thus eliminating
the concern that failure to update from retractions would be a mere expression of this pervasive
limitation. Crucially, if information about past evidence were disclosed only when the evidence
is found to be uninformative of the state, retractions would give more credence to non-retracted

evidence.12 Instead, with verifying retractions, an observation is selected independently of its
truth value and a retraction asserts the noise value of the retracted observation, but provides
no additional information about the truth value of other observations. Although these issues
10For instance, taking the number of estimates n positively related to time and as increasing in prior variance σ2 and

estimate variance σ2
ζ , there are conditions under which our illustrative model exhibits these traits.

11Perhaps the most prominent example is the Monty Hall Problem, where a subject selects one of three doors, only one
of which hides a prize. A�er making a choice, one of the unselected doors that does not hide the prize is revealed.
�e subject is then o�ered to switch their choice. Since only unselected doors without a prize can be revealed, the
other unselected door is then more likely to hide a prize and it is optimal to switch. Friedman (1998) shows that
subjects err with striking consistency, choosing o�en to keep their choices.

12For non-verifying retractions like this, the additional restrictions on which observations are retracted can be
meaningful, similarly to what occurs in the Monty Hall problem. Indeed, Proposition 1 is no longer true if
retractions provide information related to how other evidence was generated.
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are certainly relevant in a number of circumstances, verifying retractions seem to be the natural
starting point for our analysis.13 We then deliberately preclude this phenomenon and focus on
verifying retractions to make updating not only as simple as possible, but especially to make it
equivalent to deleting retracted evidence and nothing more.

3. HYPOTHESES

�e goal of the paper is to study updating from retractions and to compare it to updating from new
observations. Correspondingly, our �rst hypothesis has two parts: part (a) concerns the failure of
retractions to correct beliefs while part (b) compares retractions to equivalent new information:

Hypothesis 1 (Retractions are Ine�ective). Subjects (a) fail to fully internalize retractions, and (b)

treat retractions as less informative than an otherwise equivalent piece of new information.

We emphasize that the use of the term “retractions” in this hypothesis re�ects the meaning in
De�nition 2, with “otherwise equivalent” re�ecting the last case of Proposition 1. �us, this
hypothesis conjectures that retraction failures can emerge as a (speci�c) departure from Bayesian
updating without context-speci�c elements.

Note, importantly, that while (a) and (b) both re�ect retractions being less e�ective, and that
one conclusion may be suggestive of the other, they are ultimately distinct. In principle, both new
observations and retractions could be treated as equivalent and less informative than an earlier
observation, leading to (a) without (b)—retraction failures could be driven by a feature of learning
common to both retractions and new information. Conversely, new observations and retractions
could be treated di�erently, but with retractions being internalized fully and a distinct departure
from Bayesian updating yielding overreactions to new observations, leading to (b) without (a).

Our next hypotheses concern our proposed explanation for why retractions are less e�ective
than new observations: retractions are harder to process. �at is, we conjecture that an extra
layer of complexity is introduced for retractions, as subjects must consider what a retraction
implies about past information; since new observations (without retractions) are exchangeable,
this step is not required when learning from new observations alone. To test it, in line with our
13In ongoing research we examine a version of this experiment using targeted (i.e., non-verifying) retractions; the

results are largely consistent, although direct comparisons between the two are unwarranted, as then it is not in
general true that P (θ | St, nτ = 1) = P (θ | St \ sτ ) = P (θ | St ∪ −sτ ). �ese results are available from the
authors upon request.
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discussion in the previous section, we consider two proxies for increased cognitive complexity:
longer decision times and greater belief report variance. We conjecture that both will re�ect the
additional complexity inherent to this kind of conditional reasoning:

Hypothesis 2 (Retractions are Harder). Processing retractions is more di�cult than processing new

observations, resulting in longer decision time and greater belief variance.

We also exploit the dynamic information arrival in our experimental design to test whether
intuitively ‘harder’ retractions are less e�ective and similarly increase decision time and belief
variance. In particular, when earlier observations are retracted, there is a layer of added complexity
in belief updating: disregarding retracted observations entails forming beliefs about a dataset not
previously observed—a di�culty potentially aggravated in the presence of base-rate neglect. In
contrast, retracting the most recent observation only requires returning to the belief held prior to
that observation, b(θ | St,Retraction of st) = b(θ | St−1).

Insofar as retraction failure is tied to their inherent complexity, retractions targeting more
(less) recent information would be more (less) e�ective. �is motivates the following hypothesis:

Hypothesis 3 (Harder Retractions are Harder). Retractions of less recent observations are (a) less
e�ective, and (b) result in longer decision time and greater belief variance.

If a retraction is harder to process, then it is plausible that it is also harder to update from new
observations following a retraction. �is would constitute another expression of our proposed
mechanism, which we articulate as a related hypothesis:

Hypothesis 4 (Updating a�er Retractions). Processing new observations a�er retractions is more

di�cult, resulting in (a) subjects updating less from new observations, and in (b) longer decision time

and greater belief variance.

We conclude by considering alternative explanations for retraction ine�ectiveness. Our
design deliberately shuts o� common explanations for retraction ine�ectiveness—e.g. imperfect
memory, motivated reasoning, complex narratives, reliability of the source of retractions—and
our theoretical framework shows that retractions being less e�ective requires them to be treated
di�erently from new observations. However, being treated di�erently does not necessarily imply
that the same biases in belief updating are not present. We then consider if retraction ine�ectiveness
is simply an expression of well-known biases:
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Hypothesis 5 (Similar Updating Biases). �e same biases in belief updating from new observations

are present in updating from retractions.

Lastly, we consider a further alternative explanation for retraction ine�ectiveness: that re-
tractions are less e�ective simply because it is di�cult to disregard evidence that has been acted
on or engaged with. In contrast to an inherent greater complexity of retractions, this alternative
mechanism relies on a form of cognitive dissonance or an endowment e�ect applied to information,
suggesting the following hypothesis:

Hypothesis 6 (Retracting Used Evidence). Retractions are ine�ective only when individuals have

acted on the retracted observations.

Taken together, our hypotheses posit a diminished e�ectiveness of retractions, address several
implications of our proposed mechanism—that retractions are harder to process—and consider
two alternative mechanisms that could underlie this outcome.

4. EXPERIMENTAL DESIGN

In this section, we describe the overall experimental design—visually summarized with screenshots
from the experimental interface in Figure 1—and then provide details on the experimental interface
and protocols. As our goal is to directly test the theoretical framework in Section 2, the basic data-
generating process matches the theoretical framework presented there. Subjects were provided
full information on how observations would be drawn.

4.1. Basic Design

We �rst describe one round of the basic experimental design. Each round of the experiment has
up to four periods, with beliefs elicited at the end of each period. Each subject plays a total of
32 rounds, and no feedback on performance is provided until the end of the experiment, when
performance-based payouts are made. In each round, the sequence of events is as follows:

1. At the start of the round, a truth ball (referring to the state θ) is chosen at random to be
either yellow or blue, with equal probability. �e truth ball is then placed into the box
with four noise balls, two yellow and two blue (corresponding to P (nt = 1) = 1/5 and
P (εt = 1) = 1/2 in the information arrival process described in Section 2).
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Round 1 of 32
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(a) Determining the state. At the beginning of each round, a truth ball was selected at random, with equal
probability of being yellow or blue, and placed into a box with four noise balls, two yellow and two blue.

Round 1 of 32

Period 3: ?  ball drawn
So far you have seen:

? ? ?

The ? draws may have been either Truth
Balls or Noise Balls

0% 100%

100% 0%

What is your estimate of the probability that the Truth Ball T  is T  or T ?

The probability that the Truth Ball is T  is

--

 

The probability that the Truth Ball is T  is

--

Instructions

Debug info

vars_for_template

period 3

period_2_end_prob 33

period_2_not_end_prob 67

report_number 3

signals [{'sig': 1, 'info': None}, {'sig': 0, 'info': None}, {'sig': 1, 'info': None}]

validation None

Basic info

Round 16 of 32

Period 3: Validation
So far you have seen:

This draw was a Noise Ball

? N

The ? draw may have been either a Truth
Ball or a Noise Ball

0% 100%

100% 0%

What is your estimate of the probability that the Truth Ball T  is T  or T ?

The probability that the Truth Ball is T  is

--

 

The probability that the Truth Ball is T  is

--

Instructions

Debug info

vars_for_template

period 3

period_2_end_prob 33

period_2_not_end_prob 67
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(b) Ball draws and retractions. Rounds consisted of (up to) four periods, each of which consisted of either a
new draw or a veri�cation, followed by the elicitation of subjects’ beliefs over the color of the truth ball.
For a new draw (le�), a ball was drawn from the box (with replacement), and subjects were told its color
but not whether it was the truth ball or a noise ball. For a veri�cation (right), an earlier draw was chosen at
random, and subjects were told whether that ball was a noise ball (a retraction) or the truth ball. If it was
the truth ball, the round ended. �e history of the round was displayed throughout.

Figure 1: Summary of Experimental Visuals

2. In periods one and two, subjects obtain a new observation: a draw from the box, with
replacement. �ey are told the ball’s color but not whether it is the truth ball or a noise ball.

3. In periods three and four, and independently across periods, subjects either obtain a new
observation (as above), with probability 1/2, or they observe a veri�cation of an earlier
observation from the same round, with complementary probability. Under a veri�cation,
one of the prior draws is chosen at random and it is revealed whether it was a noise ball—a
retraction—or the truth ball. If the draw is revealed to have been the truth ball, the round
ends, as at that point the state (the color of the truth ball) is fully revealed.

Additionally, at the end of each period—that is, a�er each new signal (observation or retraction)—
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subjects report their belief regarding the probability that the truth ball is blue vs. yellow. �ese
reports are incentivized, as detailed later in the section.

To summarize, updating from retractions in our setup is made as simple as possible.

• �e prior about the state and the noise are both symmetric (P (θ = 1) = P (εt = 1) = 1/2).
• Observations are independent and identically distributed conditional on the state and the

log-likelihood of their realizations is symmetric around zero (K(st) = −K(−st)). �is is
necessary and su�cient for retracting sτ to be equivalent both to deleting the retracted
observation and receiving a new opposite observation st+1 = −sτ (Proposition 1).

• �e details of the data-generating process are graphically described in an intuitive manner;
these and the history of signals (observations and retractions) are always visible to subjects.

As explained in detail in Section 5.1, this simple design allows us to identify the e�ect of
retractions on belief updating (Hypothesis 1). Since the equivalence in Proposition 1 holds for a
broad class of belief updating rules—including Bayesian updating and generalizations common in
the literature—and does not depend on nor does it require any information on past observations,
variation across di�erent histories will also allow us to test when retractions are more or less
ine�ective (Hypotheses 3, 5) and if retractions a�ect subsequent updating (Hypothesis 4).

4.2. Single-Elicitation Treatment

Our experiment features a between-subject treatment. At the start of the experiment, subjects are
randomly allocated to one of two treatments. With 1/2 probability they are allocated to the baseline
treatment, as described above. With 1/2 probability, they are allocated to the single-elicitation

treatment, whose purpose is to test if requiring subjects to report their beliefs in every period—and
hence to act on draws before they are retracted—a�ects the e�cacy of retractions (Hypothesis 6).

In the single-elicitation treatment, the sequence of events is the same as in the baseline
treatment, except for two di�erences: (1) beliefs are only elicited at the end of each round, rather
than each period; (2) with probability 1/3, the round ends in period two; with probability 2/3, the
round ends in period three. �e design ensures that while we do not observe the entire belief path,
we are nevertheless able to form estimates for beliefs a�er two draws, as well as beliefs a�er three
draws when the third draw is either a retraction or a new observation.
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4.3. Implementation Details

Experimental Interface. A summary of the explanatory visuals shown to subjects is given in
Figure 1 and the full instructions of the experiment can be found in Online Appendix C. Beliefs
were reported using a slider, which displayed both the probability they assign to the truth ball being
either yellow or blue. A�er the instructions, subjects were given two rounds of unincentivized
“practice” to familiarize themselves with the interface.

Subject Pool and Comprehension Checks. �e experiment was run on Amazon Mechanical
Turk (henceforth MTurk) on June 16-18, 2020. In order to ensure adequate statistical power, we
targeted 200 subjects per treatment group. We recruited a total of 415 subjects, 211 subjects for
our baseline setup and 204 for the single elicitation treatment. We took several steps to ensure
that our subject pool was of high quality—these are described in greater detail in Section 7.

Payments. We incentivized subjects to report their beliefs truthfully using a binarized scoring
rule (Hossain and Okui, 2013; Mobius et al., 2022). By reporting b ∈ [0, 100], a subject would
receive $12 with probability (1− (1{θ = 1} − b/100)2) and $6 with complementary probability,
where θ equals 1 (-1) when the truth ball is yellow (blue). In the instructions—but not in the
main interface—we provided information on the elicitation procedure, phrased as eliciting the
probability the truth ball was either yellow or blue, and explained that the procedure was meant
to ensure they were incentivized to answer truthfully. To determine payments, we used a report
from a single randomly selected period of a randomly selected round. We also asked additional
questions on mathematical ability, which were incentivized by providing a $0.50 reward if they
answered correctly a randomly chosen question.

�e average compensation was of $20.02/hour, with subjects spending on average 29 minutes
in the experiment. For comparison, this rate is similar to the MTurk experiment of Enke and
Graeber (2020), and four times the MTurk average of $5.00.

Preregistration. Our experiment was registered using the AEA RCT Registry under RCT ID
AEARCTR-0003820. �e experimental design and recruitment targets were pre-registered, as were
our Hypotheses 1, 3a, 4a, 5, and 6. �e hypotheses pertaining to response time and belief variance
(2 and its variations, 3b and 4b) were introduced subsequently, as feedback we received convinced
us they provided evidence for our proposed mechanism.
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5. IDENTIFYING RETRACTION FAILURES

We divide our empirical results into two parts. In this section, we demonstrate that retractions
fail to correct beliefs and are less e�ective than new evidence, providing the �rst identi�cation
of retraction failures as a general feature of belief updating. In Section 6, we consider why
retractions are less e�ective and present evidence for our proposed explanation (and against
multiple alternatives).

We begin by explaining our empirical strategy in Section 5.1. Section 5.2 brie�y compares
updating from new observations to that found in existing literature. In Section 5.3, we turn to the
main topic of the paper, updating from retractions, testing whether retractions work, and whether
people update di�erently from retractions versus new observations. (Hypotheses 1a and 1b)

5.1. Empirical Strategy

�ere are two distinct empirical tasks: identifying the e�ectiveness of retractions for a given
history; and aggregating the results across di�erent histories. For both, we lean on the simplicity
of our experimental design to make the analysis non-parametric when possible.

5.1.1. Identifying Retraction E�ectiveness

To test the e�ectiveness of retractions and to compare it to new evidence, we perform two distinct
comparisons throughout our analysis, corresponding to parts (a) and (b) of Hypothesis 1 and
explained visually in Figure 2:

(a) Testing retraction e�ectiveness: Are subjects’ beliefs a�er seeing a retraction the same as if
the retracted observation had never been observed in the �rst place?

b(θ | Observations, Retraction of Observation sτ ) = b(θ | Observations \ Observation sτ )

(b) Comparing retractions to new evidence: Do subjects update equally from retractions as from
equivalent (in terms of Bayesian belief updates) new information?

b(θ | Observations, Retraction of Observation sτ ) = b(θ | Observations ∪ New Observation − sτ )

To outline our empirical strategy, we introduce some notation. Denote by b the subject’s
beliefs—the probability they assign to the truth ball being yellow—and by s the signal in question.
We treat signals as +1 if they favor the belief that the truth ball is yellow (new draws of a yellow
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(a) Do retractions work? We compare beliefs a�er a retraction in period t (∈ {3, 4}) to beliefs a�er an
(equivalent) “compressed history” in period t−2, the history with the retracted ball removed. �e illustrated
example compares beliefs a�er a retraction in period 3 with beliefs in period 1 following a yellow draw.Round 16 of 32
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(b) Are retractions treated di�erently from equivalent new observations? We compare beliefs a�er a retraction
in period t (∈ {3, 4}) to beliefs a�er an equivalent new observation (of opposite color to the draw which
was retracted), also in period t. �e illustrated example compares beliefs in period 3 a�er a retraction of a
blue ball and beliefs when the history through period 2 is the same but a yellow ball is draw in period 3.

Figure 2: Illustrative examples to explain the empirical strategy

ball or retractions of a blue ball) and −1 if they favor it being blue. Finally, denote by r a dummy
variable indicating whether the signal is a retraction (r = 1) or a new observation (r = 0).

With this notation in hand, for a speci�c history, we can both test (a) and (b) with the regression:

b = β0 + β1 · r · s. (4)

�e sample for test (a) comprises beliefs a�er the retraction as well as when the retracted ob-
servation had not been observed to begin with, while for test (b) it comprises beliefs a�er the
retraction and beliefs a�er a new observation of the opposite sign. �e coe�cient of interest for
both tests is β1. Under test (a), if β1 is zero, retractions work: beliefs are as if the retracted signal
was never seen; if it is negative, retracted signals continue to in�uence beliefs. Under test (b), if β1
is negative, beliefs move less in response to retractions than to equivalent new signals. To give
concrete examples, as illustrated in Figure 2, test (a) would compare beliefs in period 3 having
observed (yellow, blue, retraction of the blue), to those in period 1 having just observed (yellow);
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while test (b) would compare beliefs in period 3 having observed (yellow, blue, retraction of the

blue), to those in period 3 having observed (yellow, blue, yellow).
When analyzing retraction e�ectiveness, test (a), we compare belief reports in levels, while for

test (b) we compare e�ects on beliefs in both levels and changes (�rst di�erences), since the test is
speci�cally about how beliefs change in response to retractions. We use beliefs as reported by
subjects, on a linear scale (0 to 100), except when we analyze biases in belief updating in Section
6.2.1, where we use the log-odds scale to be consistent with existing literature.14

5.1.2. Aggregating Results Across Histories, Using Fixed E�ects

While we report results disaggregated by case, showing that they are qualitatively consistent
across histories, the results are simpler to digest when aggregated. We do so by pooling the sample
across histories in suitably modi�ed versions of the above regressions.

�e basic identi�cation concern in pooling across histories is using identifying variation
which compares updating from retractions in one history to updating from new observations in a
di�erent history. We ensure that we are only identifying o� within-history variation by using
appropriately de�ned �xed e�ects. To explain them, denote by Ht the history up to and including
period t, that is, the set of all the draws observed as well as the retractions, �xing the order. For
the tests of retraction e�ectiveness, (a), we use �xed e�ects for what we refer to as a compressed

history, C(Ht): the history, removing any retracted ball draws as if they had never occurred to
begin with, keeping the order �xed. For instance, a history of (yellow, blue, retraction of the blue)

would be equivalent to (yellow).15 For the comparisons to new observations, test (b), we include
�xed e�ects at the level of the sign history, S(Ht), which is the history without distinguishing
whether signals were new observations or retractions. For example, (blue, yellow, retraction of

the blue) is equivalent to (blue, yellow, yellow). Once we include these �xed e�ects in the pooled
regression, if there have not been retractions in previous periods, then we compare a retraction
of the ball of one color to the informationally equivalent new observation of the opposite color,
conditional on what happened in all previous periods of the round.
14Levels has the advantage that extreme beliefs, near 0 or 100, are not overly in�ated; log-odds has the advantage that

the experimental signals should lead to a constant change in the log-odds belief, independent of the prior. As we
show in Online Appendix B.5.2, our conclusions are robust to relying exclusively on log-odds.

15Note that compressed histories do not distinguish between the retracted observation having been drawn in period 1
or period 2. For example, both (yellow, blue, retraction of the blue) and (blue, yellow, retraction of the blue) have the
same compressed history, (yellow).
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5.2. Updating from New Observations

As a �rst step in our analysis, and in part as a test of validity of experimental se�ing, we exam-
ine subjects’ belief updating from (non-retracted) new observations using a standard empirical
approach in this literature. In the absence of a retraction, the design is similar to many others
surveyed by Benjamin (2019) and subjects appear to correctly understand the se�ing, with reported
beliefs tracking Bayesian posteriors closely.16

We consider Grether-style (Grether, 1980) regressions—a workhorse model of analysis in this
literature—enabling a direct comparison to existing experimental results on belief updating. �e
results are largely consistent with the main �ndings from the literature, suggesting that any
di�erences in our subsequent analysis can indeed be a�ributed to distinct features of retractions.
Speci�cally, we replicate common �ndings regarding biases in belief updating pertaining to
base-rate neglect and con�rmation bias. We emphasize that while subjects depart from Bayesian
updating, they do so in a way consistent with what one would expect from the literature, and that
our theoretical framework nevertheless implies that any additional departure due to retractions
cannot be a�ributed to explanations that are not speci�c to the nature of the information source.
Since this paper focuses on belief updating from retractions, we defer the detailed reporting and
discussion of the results to Online Appendix B.1.

5.3. Updating from Retractions (Hypothesis 1)

�is section presents our �rst main �ndings, on the failure to fully correct beliefs and on the
di�erences in belief updating from retractions as opposed to new observations.

Our �rst result, and the �rst central �nding of the paper, is the empirical support of Hy-
pothesis 1: retractions are ine�ective, in that (a) retracted observations are not fully disregarded
(Prior vs. Retraction), and (b) beliefs are less responsive to retractions than to equivalent new
signals (Retraction vs. New Draw). Figure 3 depicts mean beliefs across di�erent histories and
demonstrates both parts of the hypothesis. In panel (a) we exhibit beliefs following retractions
(dashed lines) and beliefs reported in absence of the retract observation (solid lines); panel (b)
depicts beliefs following retractions (dashed lines) and contrasts these with beliefs following
informationally-equivalent new draws (solid lines). Bars of the same color refer to histories with
16In Online Appendix B.3 we show reported beliefs and Bayesian posteriors disaggregated by history (Figure 6) as

well as the distance between them (Figure 7).
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(b) New Draw vs. Retraction

Figure 3: Retractions are Ine�ective: Beliefs (Hypothesis 1)
Notes: �e �gure displays mean reported beliefs, disaggregated by history, where a tilde denotes a retracted
observation. Dashed lines indicate histories which end in retractions, solid lines those which do not. Lines
of the same color correspond to histories inducing the same Bayesian posterior. Within a color, under
Hypothesis 1, mean beliefs will lie to the right a�er a retracted yellow draw and to the le� a�er a retracted
blue draw. p-values for the speci�c tests are displayed and were obtained by a regression similar to columns
(1) and (2) of Table 1 but restricted to the disaggregated histories, using standard errors clustered at the
subject level. Belief reports are symmetrized around 50, e.g. 100− b(BỸ ) is treated as b(Y B̃), where a tilde
denotes a retracted observation. �e sample paths do not condition on sequence order: e.g. Y B̃ and B̃Y
are bundled together. �e sample consists of subjects in the baseline treatment (beliefs elicited each period).

identical Bayesian posteriors; p-values refer to the statistical signi�cance of regression coe�cients
from regressions following tests outlined in Section 5.1 but restricting the sample to observations
with identical Bayesian posteriors. We �nd overwhelming evidence for retraction ine�ectiveness
across the di�erent histories.

Figure 4 con�rms this when looking at changes in beliefs: the change in beliefs following
a retraction is smaller than the changes in beliefs both when (a) the subsequently-retracted
observation was originally observed, and (b) when, instead of a retraction, subjects observe an
equivalent new observation. Again, in panel (a) we compare inference—change in beliefs, in
percentage points—from retractions (dashed lines) to inference from the observation which was
retracted (solid lines) by conditioning on histories with equivalent Bayesian posteriors; panel (b)
does the same but with retractions (dashed lines) and new observations (solid lines). Results point
to signi�cant underinference from retractions relative to observations, that is, direct information
about the state.

We pool these results across di�erent histories in Table 1. Column (1) is a test of (a) and
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Figure 4: Retractions are Ine�ective: Changes in Beliefs (Hypothesis 1)
Notes: �e �gure compares the change in beliefs following the retraction of an observation to (a) the change
in beliefs when the observation was �rst drawn, and (b) the change in beliefs following an equivalent new
observation. Belief reports are symmetrized around 50, e.g. −(b(BỸ )− b(BY )) is treated as (b(Y B̃)−
b(Y B)); equivalently, we normalize the direction in which the updating should occur by considering
∆bt · st. Values are changes in reported beliefs in percentage points. �e sample paths do not condition
on sequence order: e.g. Y B̃ and B̃Y are bundled together. �e sample consists of subjects in the baseline
treatment (beliefs elicited each period). �e whiskers denote 95% con�dence intervals using standard errors
clustered at the subject level; p-values were obtained by auxiliary regressions similar to column (3) of Table
1, but restricting to the disaggregated histories.
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Prior vs. Retraction New Draw vs. Retraction
(1) (2) (3) (4)
bt bt ∆bt ∆bt

Retraction (rt) 0.201 -0.167 -0.351 -0.242
(0.275) (0.368) (0.355) (0.363)

Retracted Signal (rt · st) -3.134∗∗∗ -3.628∗∗∗ -3.701∗∗∗ -3.316∗∗∗

(0.601) (0.726) (0.670) (0.675)
Signal (st) – – – 8.658∗∗∗

(0.510)
Compressed History FEs Yes No No No
Sign History FEs No Yes Yes No
Lagged Sign History FEs No No No Yes
R-Squared 0.34 0.34 0.18 0.15
Observations 22578 22578 22578 9074
Clustered standard errors at the subject level in parentheses.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 1: Retractions are Ine�ective (Hypothesis 1)
Notes: �is table tests compares whether retractions return beliefs to what they would have been had the
retracted signal never been observed, and compares their e�ectiveness relative to new direct information.
�e sample includes beliefs of subjects in the baseline treatment (beliefs elicited each period). Column (1)
tests part (a) of the hypothesis, whether retractions work, by comparing beliefs a�er a retraction to beliefs
a�er the equivalent compressed history. �e outcome is the beliefs in period t, bt ∈ [0, 100]. In the case of
a retraction, st is the opposite sign of the original observation being retracted in round t (+1 if an earlier
-1 signal is retracted, -1 if an earlier +1 signal is retracted). �e regression includes �xed e�ects for the
compressed history of draws. Columns (2) to (4) test part (b) of the hypothesis, whether people update less
from retractions compared to equivalent new observations. �e speci�cations include �xed e�ects for the
sign history. In column (2), the outcome is the beliefs in period t, bt. In columns (3) and (4), the outcome is
the �rst di�erence in beliefs. Column (4) uses lagged sign history �xed e�ects to enable us to compare the
magnitude of rt · st to st, which is otherwise absorbed by the �xed e�ects. In columns (1)-(3), the sample
excludes cases in which the truth ball is disclosed and in which there was a retraction in the past; column
(4) further restricts to periods 3 and 4.

corresponds to the following regression:17

bt = β1 · rt · st + β2 · rt + FC(Ht), (5a)

where we exclude from the sample cases in which the truth ball is disclosed or in which there
was a previous retraction. As explained in Section 5.1.2, controlling for compressed history �xed
17�e coe�cient on r, which is added when we aggregate across histories, has no meaning in itself: it identi�es

whether beliefs are on average shi�ed toward yellow when retractions occur, given the �xed e�ects. �e coe�cient
will depend not only on how the realized frequency of blue and yellow observations compares to that of retractions,
but also on which one is the base group for the �xed e�ects.
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e�ects FC(Ht) compares, for example, the beliefs a�er observing (s1, s2, n2 = 1) to those reported
when only observation s1 was seen.

Columns (2)-(4) test (b) and correspond to variants of the following regression:

bt = β1 · rt · st + β2 · rt + β3 · st + FS(Ht), (5b)

where we again exclude from the sample cases in which the truth ball is disclosed or in which there
was a previous retraction. Controlling for sign history �xed e�ects, FS(Ht), means we compare
for example beliefs reported a�er (s1, s2, n2 = 1) to those reported a�er (s1, s2, s3 = −s2). In
column (2) the dependent variable is belief levels, whereas in columns (3) and (4) it is change in
beliefs. Column (4) uses less stringent �xed e�ects—those for lagged signed history FS(Ht−1)—so
that the signal term st is not absorbed by the �xed e�ects, but only includes periods 3 and 4. �is
enables us to benchmark the di�erential e�ect of retractions, β1, by comparing it with the e�ect
of new observations, β3.

�e key �nding for both tests is that the di�erential e�ect of retractions on beliefs, β1 the
coe�cient on rt · st, is negative and consistent in magnitude across all of the speci�cations we
study. Retractions are treated di�erently, and in particular as if they were less informative than
equivalent new observations. To quantify this e�ect, a simple comparison shows that beliefs
move approximately one-third less when information is in the form of a retraction. �is can
be seen from column (4) of Table 1, by comparing the coe�cient on the retracted signal—the
interaction term between the signal and the retraction variables—to the coe�cient on the signal
variable itself. Performing this back-of-the-envelope calculation in other ways, for example by
dividing the coe�cient on rt · st in column (3) by the average update from a new observation
in the corresponding sample, consistently �nds that beliefs update around 1/3 from retractions
relative to new observations.

6. WHY DO RETRACTIONS FAIL?

We now turn to why retractions are not e�ective, and why they a�ect beliefs less than equivalent
new observations. If the ine�ectiveness of retractions was due to biases in updating from new
observations, by Proposition 1, there would be no di�erence in updating from new observations
versus from retractions. Having demonstrated that, in fact, retractions are treated as less informa-
tive than an otherwise equivalent new observation (Hypothesis 1b), our starting point is that any
explanation should be germane to retractions themselves—established biases such as con�rmation

23



bias cannot explain our results. We divide our analysis of possible mechanisms into two parts. First,
we provide evidence that retractions, being are information about information, are fundamentally
more complex and harder to process. Second, we discuss alternative mechanisms which could
plausibly generate our results, and show that they do not.

6.1. Retractions are Harder to Process

We propose and �nd support for a mechanism which could explain why retractions are less
e�ective: retractions are simply harder to process. Our design made retractions as simple as
possible, rendering retracting a signal equivalent to the intuitive benchmark of deleting it, as well
as to an opposite observation. Yet, despite the informational equivalence between observations and
retractions, the former are simply information, while retractions are information about information,
indicating how to interpret past observations. �is qualitative di�erence implies that retractions
necessitate conditional reasoning, which may make it harder to assess their informational content.

We explore hypotheses suggested by the theoretical model in Section 2, which posit that the
diminished e�ectiveness of retractions is caused by a corresponding increase in the cognitive
di�culty of updating (measured by σ2

ζ ). We rely on two commonly used proxies for cognitive
imprecision: decision times and variability in responses—we refer to Section 2 for a discussion. First,
we test whether retractions induce longer decision times and greater belief variance (Hypothesis
2). Second, we posit and argue that retractions of less recent observations are relatively harder
to process (Hypothesis 3) and that inferring from new observations following retractions is also
harder (Hypothesis 4). We test and verify that our behavioral markers in both cases are aligned
with our conjecture—i.e. decision times are longer and belief variance is higher for situations
conjectured to be more complex—and show that indeed subjects infer less in the presumed more
complex situation.

6.1.1. Retractions, Longer Decision Times and Greater Belief Variance (Hypothesis 2)

�e idea that retractions are more cognitively taxing motivates our hypothesis that they result
in greater cognitive imprecision and thus induce longer decision times and greater variability in
responses, as discussed above.

To test whether decision times are longer when subjects are faced with a retraction (Hypothesis
2a), we use an identi�cation strategy similar to the one used to test the e�ects of retractions on
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Prior vs. Retraction New Draw vs. Retraction
(1) (2) (3) (4)

log(dtt) V(bt | ht) log(dtt) V(bt | ht)
Retraction (rt) 0.053∗∗∗ 128.1∗∗∗ 0.101∗∗∗ 71.7∗∗∗

(0.016) (20.300) (0.015) (22.119)
Mean Decision Time (secs) 6.674 – 6.674 –
Compressed History FEs Yes Yes No No
Sign History FEs No No Yes Yes
R-Squared 0.01 0.02 0.02 0.02
Observations 22578 3030 22578 3030
Clustered standard errors at the subject level in parentheses.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 2: Retractions are Harder (Hypothesis 2)
Notes: �is table tests if retractions induce longer decision times and greater belief variance. Columns
(1) and (3) test if retractions induce longer decision times, measured in log-seconds (Hypothesis 2a). �e
sample includes decision times of subjects in the baseline treatment (beliefs elicited each period), excluding
cases in which the truth ball is revealed and those in which there was a retraction in the past. Column (1)
compares decision time a�er a retraction to decision time a�er the equivalent compressed history. Column
(3) compares decision time a�er a retraction to decision time a�er an equivalent new draw. Columns
(2) and (4) test whether retractions induce higher belief volatility (Hypothesis 2b). Column (2) compares
belief variance following a retraction to belief variance at equivalent histories in which the retracted signal
was not drawn; the dependent variable is the sample variance of beliefs of a given subject, conditional on
permuted compressed histories and on whether a retraction occurred. Column (4) compares belief variance
following a retraction to belief variance following an equivalent new draw; the dependent variable is the
sample variance of beliefs of a given subject, conditional on permuted sign histories and on whether a
retraction occurred.

belief updating (Section 5.1). Speci�cally, in Table 2, we estimate two versions of

log(dtt) = β1 · rt + F (6a)

where dtt is the subjects’ decision time in seconds. F corresponds to either compressed history
�xed e�ects or sign history �xed e�ects, as in columns (1) and (2)-(4) of Table 1 and under the
same sample restrictions. In the �rst case, we compare decision times following a retraction with
those at histories in which the retracted observation was never drawn. In the second, we compare
decision times following a retraction versus an informationally equivalent new observation.

We pursue an analogous strategy to identify the e�ect of retractions on belief variance and
test Hypothesis 2b. To test if retractions increase belief variance relative to histories in which the
retracted observation was never drawn, we calculate the sample belief variance at the subject-
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level conditional on the compressed history and on whether a retraction was observed, Var(bt |
C(Ht), rt). We treat compressed histories that are the same up to permutations as the same
compressed history so as be able to estimate within-subject belief variance at a given (permuted)
compressed history. To we test whether belief variance following a retraction is greater than at
informationally equivalent histories in which the retracted observation was never drawn, we
estimate the following equation:

Var(bt | C(Ht), rt) = β1 · rt + FC(Ht). (6b)

Analogously, to compare belief variance following a retraction versus an equivalent new obser-
vation, we calculate the sample belief variance, for each subject, conditional on the sign history
S(Ht) (allowing for permutations) and on the occurrence of a retraction in period t, and estimate

Var(bt | S(Ht), rt) = β1 · rt + FS(Ht). (6c)

We note that, by conditioning on permutations of compressed/sign histories, we hold �xed Bayesian
posteriors; i.e. permutations of a compressed/sign history are informationally equivalent. For
notational simplicity, we write V (bt | ht) to denote the subject-level sample variance conditional
on (permuted) compressed/sign histories as described above.

�e results, in Table 2, con�rm both Hypotheses 2a and 2b. Speci�cally, column (1) shows that
subjects take approximately 5% longer reporting beliefs following a retraction when compared to
cases in which the retracted observation was never drawn. Comparing retractions with equivalent
new draws, belief reporting following a retraction takes 10% longer (column (3)). Columns (2)
and (4) provide an analogous comparison for belief variance estimated at the subject level, which
retractions increase by over one third. In both cases, we see that belief variance increases following
a retraction. In Appendix B.5.8, we provide an alternative test for whether variance of beliefs
is higher for retractions than for new observations, whereby we disagreggate by (permuted)
compressed and sign histories; the results are consistent. In Appendix B.5.7, we show results
on response times remain valid when controlling for the round number and its interaction with
retractions. While our results show subjects take less time in later rounds, the increase in decisions
time caused by retractions remains consistent in later rounds, when subjects have had more
experience observing retractions.18

18Note that subjects are fully informed they may see a retraction prior to any round where they do, and the interface is
as similar as possible for new draws and retractions; hence we do not �nd it surprising we do not detect a di�erence
depending on whether subjects has seen more retractions in the past.
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Our results suggest that retractions are not only treated di�erently, they are also harder to
process. In line with the literature on cognitive imprecision, one interpretation consistent with our
results is that such increased complexity is re�ected in a noisier perception of the informativeness
of a retraction relative to direct information about the state of the world.

6.1.2. Harder Retractions are Harder (Hypothesis 3)

We exploit the fact that our design entails dynamic arrival of information to distinguish retractions
according to whether or not they refer to the last observation. Speci�cally, we argue that retractions
of observations received earlier may induce a more complex reevaluation of previously observed
signals, relative to retractions of observations received more recently. When, at time t, the
observation received at t− 1 is retracted, then subjects need but to revert to the belief they held at
t− 2, that is, before receiving that observation. Hence a natural conjecture is that retractions are
more e�ective when they to refer to information that was just received (Hypothesis 3a), in which
case subjects only need report their beliefs from the previous period. Moreover, if retractions of
more recent observations are then less complex and insofar as decision time and belief variance
proxy for cognitive complexity, lower decision times and belief variance in cases in which retracted
observations occurred in the previous period (Hypothesis 3b).

In columns (1) and (4) of Table 3, we report the same basic speci�cations described in Section
5.3, tests of (a) retractions and (b) retractions versus new information, but with the addition of an
indicator variable for whether the last signal observed was retracted (rlt), as well as its interaction
with the signal itself. We �nd greater e�ectiveness of retractions when these correspond to the
most recently received ball draw: it is easier to disregard a piece of information if it arrived more
recently. However, subjects still fail to fully disregard retracted signals, even when they are of the
most recent draw, as re�ected by the sum of the coe�cients on rt · st and rlt · st being negative
(p-value= .021) and over 1/3 of the size of rt · st.

Analogously, we expand the analysis of decision times and of (conditional sample) variance
of beliefs from Table 2 to also account for whether the retracted observation corresponds to the
last draw or not. Columns (2) and (5) add the indicator for whether the last signal observed
was retracted (rlt) to equation (6a). Columns (3) and (6) mimic the speci�cations in equation
(6b) and (6c) by conditioning not only on permuted compressed/sign history and the occurrence
of a retraction, but also on whether the retraction refers to the last draw. In line with greater
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Prior vs. Retraction New Draw vs. Retraction
(1) (2) (3) (4) (5) (6)
bt log(dtt) V(bt | ht) bt log(dtt) V(bt | ht)

Retraction (rt) 0.630 0.088∗∗∗ 131.1∗∗∗ -0.158 0.119∗∗∗ 77.5∗∗∗

(0.412) (0.018) (24.558) (0.438) (0.018) (26.426)
Retracted Signal (rt · st) -4.341∗∗∗ – – -4.258∗∗∗ – –

(0.685) (0.800)
Last Draw Retracted (rlt) -0.981 -0.080∗∗∗ -80.828∗∗ -0.029 -0.042∗ -76.454∗∗

(0.662) (0.019) (33.165) (0.697) (0.021) (33.968)
Retracted Signal 2.737∗∗∗ – – 1.436∗∗ – –
x Last Draw Retracted (rlt · st) (0.678) (0.641)
Mean Decision Time (secs) – 6.674 – – 6.674 –
Compressed History FEs Yes Yes Yes No No No
Sign History FEs No No No Yes Yes Yes
R-Squared 0.34 0.01 0.02 0.34 0.02 0.02
Observations 22578 22578 3295 22578 22578 3295
Clustered standard errors at the subject level in parentheses.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 3: Harder Retractions are Harder (Hypothesis 3)
Notes: �is table tests if retractions of less recent observations: are less e�ective (columns (1) and (4)),
result in shorter decision times (columns (2) and (5)), and induce lower belief variance (columns (3) and (6)).
�e sample is restricted to subjects in the baseline treatment (beliefs elicited each period). �e dependent
variable in columns (1) and (4) is the beliefs in period t, bt ∈ [0, 100]. In the case of a retraction, st is the
opposite sign of the original observation being retracted in round t (+1 if an earlier -1 signal is retracted,
-1 if an earlier +1 signal is retracted). In columns (2) and (5), the dependent variable corresponds to the
decision time at a given period. �e dependent variable in columns (3) and (6) is the sample variance of
beliefs of a given subject, conditional on on whether or not a retraction occurred, on whether the last
observation was retraction, and on the permuted compressed history (column (3)) or the permuted sign
history (column (6)). Columns (1) and (4) exclude cases in which the truth ball is disclosed and in which
there was a retraction in the past; columns (2) and (5) consider decision times under the same conditions.

e�ectiveness, we further observe that belief reporting is starkly faster when the retraction refers
not to an earlier but to the last draw—columns (2) and (5) of Table 3—and also that retractions of
more recent observations induce lower belief variances—columns (3) and (6) of Table 3.

To summarize, our results suggest that more recent observations are easier to retract than more
distant observations: their retractions are cognitively less demanding and also more e�ective—
albeit less than obtaining informationally equivalent direct information.
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6.1.3. Updating A�er Retractions (Hypothesis 4)

To conclude this section, we consider the e�ect that retractions have on updating from subsequent
new evidence. To our knowledge, this is the �rst time that data of this kind is collected and
analyzed, and, therefore, existing literature provides li�le guidance. Our design precludes any
consideration of drawing inferences on the credibility of the source following a retraction. Our
posited mechanism, however, suggests that if a retraction is more di�cult to process, it may be
more di�cult to update following a retraction.

We �rst test if beliefs change less in response to a signal following a retraction by estimating

∆bt = β1 · rt−1 · st + β2 · rt−1 + FS(Ht) (7a)

where rt−1 is an indicator for whether a retraction occurred in the previous period. We consider
all beliefs from all periods, except cases when the truth ball is disclosed or when there are multiple
retractions within a round. �e use of sign history �xed-e�ects FS(Ht) allows us to identify the
e�ect of a retraction in the previous period on belief updating. Our dependent variable of interest
is the change in beliefs ∆bt and not level beliefs bt since observing an e�ect could be due to the
e�ect of retractions on updating at t− 1 and not on subsequent updating.

To gauge if updating from new observations a�er retractions is harder, we use an analogous
identi�cation strategy and estimate

log(dtt) = β1 · rt−1 + FS(Ht). (7b)

Finally, we rely on the approach as described in Section 6.1.1 to test if previous retractions a�ect
belief volatility. In particular, we calculate for each subject the sample variance of their beliefs
conditional on whether or not a retraction occurred in the previous period and on the (permuted)
sign history; we denote such quantity by V (bt | ht). �en, using V (bt | ht) as a dependent variable,
we estimate a version of equation (7b), where �xed e�ects refer to permuted sign history.

�e results are presented in Table 4. Column (1) indicate that subjects do in fact infer less
from new observations following a retraction, with the coe�cient on rt−1 · st being signi�cantly
negative. Moreover, having had a retraction in the previous period does signi�cantly increase
decision time by 8% (column (2)), indicating greater cognitive imprecision in evaluating available
evidence. Column (3) shows that belief variance increases, further corroborating this assessment.
To conclude, retractions make subsequent updating from news observations less responsive and
more cognitively demanding, consistent with retractions themselves being harder to process.
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New Draw vs. Retraction
(1) (2) (3)

∆bt log(dtt) V(bt | ht)
Retraction (rt−1) 0.794 0.083∗∗∗ 136.0∗∗∗

(0.805) (0.025) (40.526)
Retracted x Signal (rt−1 · st) -1.881∗∗ – –

(0.782)
Mean Decision Time (secs) – 6.675 –
Compressed History FEs No No No
Sign History FEs Yes Yes Yes
R-Squared 0.18 0.02 0.03
Observations 21270 21270 2611
Clustered standard errors at the subject level in parentheses.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 4: Updating A�er Retractions (Hypothesis 4)
Notes: �is table tests if processing new observations a�er retractions results is more di�cult, resulting
in subjects updating less from new observations (column (1)), in longer decision times (column (2)), and
greater belief variance (column (3)). �e sample includes beliefs of subjects in the baseline treatment (beliefs
elicited each period). In columns (1)-(2), the sample excludes cases in which the truth ball is disclosed and
in which there was a retraction in period 4. Column (3) compares belief variance a�er a retraction to belief
variance a�er an equivalent new draw; the dependent variable is a subject’s sample variance of beliefs,
conditional on permuted sign histories and on whether a retraction occurred in the previous period.

6.2. Alternative Explanations

In this section, we consider alternative—but not necessarily competing—explanations for why
retractions are ine�ective in correcting beliefs and less e�ective than new signals. First, we
examine if biases in updating from retractions are nevertheless similar to those in updating from
new observations, and whether such similarities could underlie retraction failures. Second, we test
whether retraction ine�ectiveness is driven by retracted evidence having been actively used by
the subjects. We then conclude with a summary of the mechanisms which we are able to rule out.

6.2.1. Similar Updating Biases (Hypothesis 5)

According to Proposition 1, any explanations that do not treat retractions di�erently—such as
con�rmation bias—cannot explain why retractions fail. Here we seek to determine whether,
despite their being treated di�erently, updating from retractions is nevertheless a�ected by biases
akin to those a�ecting updating from new observations, and whether similarity in these biases
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All Periods Period 3
(1) (2) (3) (4)
lt lt lt lt

Prior (lt−1) 0.834∗∗∗ 0.800∗∗∗ 0.904∗∗∗ 0.839∗∗∗

(0.037) (0.037) (0.051) (0.051)
Signal (st) 1.126∗∗∗ 0.998∗∗∗ 1.647∗∗∗ 1.314∗∗∗

(0.071) (0.072) (0.135) (0.142)
Signal Con�rms Prior (st · ct) – 0.417∗∗∗ – 0.705∗∗∗

(0.135) (0.246)
Retraction (rt) -0.033 -0.030 -0.034 -0.026

(0.021) (0.021) (0.033) (0.034)
Retraction x Prior (rt · lt−1) 0.019 0.070∗ -0.093∗ -0.002

(0.040) (0.042) (0.053) (0.051)
Retracted Signal (rt · st) -0.768∗∗∗ -0.541∗∗∗ -1.286∗∗∗ -0.825∗∗∗

(0.092) (0.097) (0.156) (0.160)
Retraction x Signal Con�rms Prior (rt · st · ct) – -0.675∗∗∗ – -1.051∗∗∗

(0.173) (0.241)
R-Squared 0.44 0.44 0.43 0.43
Observations 22578 22578 6081 6081
Clustered standard errors at the subject level in parentheses.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 5: Similar Updating Biases (Hypothesis 5)
Notes: �is table tests whether biases in belief updating are di�erent when updating from retractions. It
estimates the standard speci�cations in Table 8, but interacting its terms with whether the signal was a
retraction. �e sample consists of all elicited beliefs of subjects in the baseline treatment (beliefs elicited
each period), excluding those elicited a�er a veri�cation, within a given round. Columns (1) and (2) consider
all periods; columns (3) and (4) restrict the sample to period 3. �e outcome is the log-odds of beliefs in
period t, lt. st is the signal in round t (+1 or -1, multiplied a constant factor of Bayesian updating such
that the coe�cient on st would be 1 under Bayesian updating). ct := 1{sign(lt−1) = sign(st)} denotes
whether the signal at t con�rms the prior at t− 1.

could explain retraction failures.

Speci�cally, we utilize the conventional Grether-style (Grether, 1980) speci�cations in the
literature analysing other deviations from Bayesian updating in similar experiments. �ese rely
on log-odds speci�cations—discussed in Section 2—that take the following form:

lt = β0 + β1 · lt−1 + β2 · st ·K (8a)

and lt = β0 + β1 · lt−1 + β2 · st ·K + β3 · st ·K · ct (8b)
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where t is the period, lt is the log-odds of the beliefs reported at t,19 st is the signal in round t (+1
or -1), ct := 1{sign(lt−1) = sign(st)} is an indicator function that equals 1 when the signal at t
con�rms the prior at t−1, and K > 0 is a constant factor of Bayesian updating (the log-likelihood
of the signal).

In the above speci�cations, a Bayesian decisionmaker would exhibit a coe�cient β2 = 1,
and β2 < 1 or > 1 would imply, respectively, under- and over-inference from signals. Similarly,
Bayesian updating would entail β1 = 1, while a common �nding is that belief updating exhibits
base-rate neglect, with β1 < 1. Finally, con�rmation bias is captured by β3 > 0, while instead
a Bayesian would have β3 = 0. As discussed in Sections 5.2, we estimate these speci�cations
restricting the sample to histories in which there is no retraction and we �nding pa�erns standard
in the literature—results are reported in Section B.1.

We here return to these regression speci�cations and fully interact them with the retraction
variable, rt, corresponding to whether the signal was in the form of a retraction:

lt = β0 + β1 · lt−1 + β2 · st ·K + β3 · st ·K · ct+
+ rt · [γ0 + γ1 · lt−1 + γ2 · st ·K + γ3 · st ·K · ct] (9)

�e inclusion of the interactions allows us to detect how previously documented deviations
from Bayesian updating vary, depending on whether or not the signal is a retraction. In other
words, they provide a �exible functional form in order to capture the e�ect of retractions as
discussed in Section 2.

�e results can be found in Table 5. A striking pa�ern emerges: when updating from new
draws subjects (slightly) overinfer from signals (β2 ≥ 1) and do more so when signals con�rm the
prior (β3 > 0); in contrast, when updating from retractions they under-infer (0 < β2 + γ2 < 1)

and exhibit anti-con�rmation bias (β3 + γ3 < 0).20 In sum, belief updating from retractions
exhibits the opposite biases to updating from new draws, a conclusion which is robust across
all speci�cations. �is strengthens the conclusion that retractions are treated di�erently from
new signals, inasmuch as the behavioral responses to retractions are not simply accentuating
19All tables involving log-odds of beliefs treat bt = 100 and bt = 0 respectively as bt = 100 − δ and bt = δ. We

chose δ = 0.1 so as to avoid biasing the regression with extreme outliers. �e results are robust to varying δ and to
dropping subjects that answer bt ∈ {0, 100}.

20We conduct F -tests to analyze the statistical signi�cance of such observations: β2 is not signi�cantly di�erent
from 1 in column (2) (p-values= .974), and signi�cantly larger than 1 in the remaining columns; β2 + γ2 is always
signi�cantly smaller than 1 and larger than 0 (p-value< .001 in all cases); β3+γ3 is always negative and signi�cantly
di�erent from zero (p-value< .001 for column (3) and .011 for column (4)).
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pre-existing biases; in fact, retractions induce opposite biases in belief reporting behavior.

6.2.2. Retracting Used Evidence (Hypothesis 6)

Here we consider another potential explanation for why retractions fail: that it is di�cult to
disregard evidence that has been actively used, as might be suggested by explanations based on
cognitive dissonance. We test this hypothesis by comparing updating from retractions when
beliefs have already been elicited to when they have not, by contrasting belief reports across our
between-subject treatments: the baseline treatment—in which beliefs are elicited every period
within a round—and the single-elicitation treatment—in which beliefs are elicited only at the end
of the round.

�e results from this comparison are documented in Table 6. �e speci�cations correspond
to equations (5a) and (5b) which we described in Section 5.3, with the addition of the single-
elicitation treatment as an interaction term.21 �e result is a null result: having acted upon a piece
of information does not change the e�ect of it being retracted on belief updating. As before, beliefs
move in the directions of signals, but less so for retractions relative to new signals. While this
does not imply that retractions are as (in)e�ective when individuals acted upon past information
in other contexts, it does strengthen our conviction that our results are not due to design details.

6.2.3. Explanations for Retraction Failures Ruled out by our Design

We conclude by taking stock of alternative explanations for retraction failure that we rule out
based on the design itself.

First, we recall from the introduction that our use of an balls-and-urns design was motivated by
our desire to tie retraction failures documented in Section 5.3 to belief updating itself, minimizing
the role of explanations related to particular domains (e.g., scienti�c understanding or political
preferences). In particular, the fact that motivated reasoning is o�en at play in political domains
might suggest it plays an important role in the limited e�ectiveness of retractions; while this
could magnify the e�ect we �nd, we �nd this e�ect even without motivation. We emphasize
that the paradigm we use has the advantage of allowing us to quantify objectively correct beliefs,
which is di�cult or impossible to do in domains where beliefs are subjective or, perhaps more
21When beliefs are elicited only at the end of each round, it is not possible to obtain the �rst di�erence in beliefs and

there is therefore no reasonable way to estimate columns (3) and (4) of Table 1.
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Prior vs. Retraction New Draw vs. Retraction
(1) (2)
bt bt

Final (Fint) 0.175 0.143
(0.938) (0.997)

Retraction (rt) -0.048 -0.230
(0.326) (0.400)

Retracted Signal (rt · st) -2.404∗∗∗ -3.658∗∗∗

(0.622) (0.712)
Final x Retraction (Fint · rt) – 0.049

(0.754)
Final x Retracted Signal (Fint · rt · st) 0.132 0.154

(0.999) (0.995)
Compressed History FEs Yes No
Sign History FEs No Yes
R-Squared 0.21 0.31
Observations 11213 9920
Clustered standard errors at the subject level in parentheses.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 6: Retracting Used Evidence (Hypothesis 6)
Notes: �is table tests whether updating from retractions is di�erent if beliefs have previously been elicited
before a signal is retracted. It estimates speci�cations in Table 1, but interacting its terms with an indicator
for whether the subject was in the single-elicitation treatment (Fint). �e sample includes all subjects, both
those in the baseline treatment (beliefs are elicited each period) as well as those in the �nal elicitation
treatment (beliefs are elicited only at the end of the round), but restricted to periods 1 to 3 and to cases
in which the truth ball is not disclosed. Column (1) restricts to period 1 and to period 3 when there is
a retraction, interacting the speci�cation from column (1) in Table 1—are retractions e�ective—with a
dummy for being in the single-elicitation group (Fint · rt and Fint · st are spanned by the other controls and
hence omi�ed, since period 3 is only in the sample when it is a retraction, making Fint = Fint · rt within
the sample). Column (2) restricts to period 3, interacting the speci�cation from column (2) in Table 1—is
updating from retractions di�erent from updating from new observations—with a dummy for being in the
single-elicitation group.

problematically, not concretely de�ned. Issues of whether retractions lead to questioning the
source’s reliability, while interesting in their own right, are also precluded in our se�ing.

Second, as Proposition 1 demonstrates, only explanations speci�c to retractions can rationalize
retraction failures. Indeed, we design our experiment such that we can compare retractions to other
pieces of equivalent information. We can thus distinguish retraction failures from any explanation
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that applies to all forms of information processing and belief updating, such as con�rmation bias.
�ird, since our design nests the classic balls-and-urns setup, it allows us to replicate and

compare our �ndings with the existing literature on biases in belief updating, and show that the
failure of retractions is a distinct phenomenon. Proposition 1 shows that the biases in updating
from new information cannot by themselves explain the failure of retractions, as otherwise
there would be no di�erence in updating from retractions and equivalent new observations. Our
results studying such biases further show that they are also qualitatively di�erent for retractions
as compared to new observations, as shown above in Section 6.2.1: biases in updating from
retractions are not simply accentuated versions of pre-existing biases.

Fourth, we tested whether retractions fail due to subjects having used the retracted evidence
in the past. As reported above in Section 6.2.2, we fail to detect any e�ect di�erence on the
(in)e�ectiveness of retractions when compared to a case in which retracted evidence was never
acted upon prior to its retraction. Finally, we note that, as the subjects have access, at all times, to
the whole history of observations and (if any) retractions, we rule out memory issues related to
imperfect recall of previous draws of which observation is retracted.

In sum, while Section 6.1 tests and provides support for one mechanism—that retractions are
treated as more complex than new direct evidence—here we have ruled out a plethora of other
mechanisms either by testing them explicitly or by design.

7. ROBUSTNESS CHECKS

We subjected our results to a ba�ery of robustness checks. In this section, we address two possible
concerns: that results are driven by subjects failing to understand the se�ing, and that they are
driven by a small fraction of subjects instead of being a general feature in our sample.

7.1. Subject Screening

We strove to ensure that our results were not driven by ina�entive subjects. While behavior
of participants in our choice of subject pool (Amazon Mechanical Turk) has been shown to
approximate well a representative population sample, it is also the case that behavior is ‘noisy’
relative to a traditional laboratory subject pool (Snowberg and Yariv, 2021; Gupta et al., 2021).

We went to lengths to �lter out bots and overly ina�entive subjects at the start of the experiment.
Speci�cally, we took four main steps in order to ensure that our subject pool was of high quality.
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First, we included captchas throughout the experiment in order to �lter out bots. Second, we
included comprehension questions in the instructions which subjects needed to answer correctly
in order to proceed with the experiment. �e questions summarized the key points the subjects
needed to understand, and would have been very di�cult to answer correctly without having
understood the instructions. While unincentivized, the majority of the subjects answered all
questions correctly on the �rst try (55%), and 90% answered correctly by the second try—with
uniform random guesses, the probability of answering all correctly on �rst try would be lower
than 1%. �ird, as detailed in Section 4.3, we used a payment scheme which involved a high
baseline and reward pay. Fourth, we restricted our study to be held only during business hours
(Eastern Standard Time), and we restricted eligibility to US adults and precluded the possibility of
repeating the experiment.

�ese quality checks were important for us to be able to meaningfully test our hypotheses.
Excessively noisy answers would have a�enuated our results: while a subject answering 50-50
to everything would not be a Bayesian, they would also demonstrate no di�erential updating
from retractions. It was also important that subjects understood retraction should not be treated
as evidence for the opposite state. Misinterpreting the instructions in this way would suggest
retractions should be treated as more informative than new information, again working against us
�nding evidence for our hypothesis.

7.2. Subject Understanding

We also check robustness to excluding subjects based on di�erent measures of ina�entiveness. �e
results are robust, and in fact slightly stronger, when restricting the sample to those subjects who
appear a�entive, as de�ned in three di�erent ways. First, using the (unincentivized) comprehension
questionnaire that followed the presentation of the instructions, we restrict our sample to subjects
who answered all questions correctly on their �rst try, who account for a majority. Second, we
further restrict the sample to subjects who, when the state is revealed, correctly report that they
know the state. �ird, we remove subjects whose belief reports are excessively noisy, which
we de�ne as updating in the opposite direction to the signal more than 10% of the time.22 �e
robustness and indeed slight strengthening of the results (see Online Appendix B.5) is consistent
22As explained in Online Appendix B.5, we consider varying degrees of mistake-propensity; our conclusions remain

the same. We also note these checks are correlated. For example the �rst two samples contain a substantially smaller
fraction of subjects with excessively noisy reports.
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with noisy subjects if anything a�enuating the e�ect, and shows that ina�ention is not driving
our results. Other robustness checks include checking whether subjects mistake sampling with
and without replacement.23 Finally, the fact that retractions are more e�ective when they are
arguably easier to interpret—e.g. when the last observation is retraction—suggests that subjects do
understand the information retractions convey, but that processing this information is challenging
and more so than direct evidence about the state.

7.3. Individual Heterogeneity

Underinference from retractions appears to be a robust feature within our subject pool, with
our results being driven by a substantial fraction of subjects, not just a small minority. To test
this, we estimate the speci�cations in Table 1 at the subject-level. We report summary statics
on the subject-level estimates of the coe�cient of interest (Retracted signal) in Online Appendix
B.6.2. It is di�cult to fully decompose the heterogeneity in these estimates into underlying
population heterogeneity versus sampling noise, given the small number of belief reports per
subject. However, both the mean and the median of these coe�cient estimates are similar to our
baseline estimates, and the estimates are strictly negative for a substantial majority of the subjects
(approx. 70%).

We also examine whether retractions are more e�ective for subjects with higher quantitative
ability, proxied for by their scores on incentivized quantitative multiple-choice questions which
were asked at the end of the experiment. Expanding our main speci�cations to account for
heterogeneity with respect to quantitative ability, we fail to �nd any signi�cant e�ects, as reported
in Online Appendix B.6.

8. CONCLUSION

Our contribution is to demonstrate and quantify retraction ine�ectiveness, as distinct from biases
in updating from direct information. �e balls-and-urns se�ing we use allows us to make this
comparison cleanly and precisely, in an incentivized manner, and has been used widely to establish
important results on belief updating, several of which we replicate. Moreover, the abstract se�ing
suggests that the failure of retractions can be viewed as an information-processing error, and is
23If sampling were without replacement, observing three draws of the same color would reveal the color of the truth

ball. Less than 10% of all subjects hold extreme beliefs (close to 1 or 0) in these cases. Removing these subjects from
the sample leaves results virtually unchanged.
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not entirely due to some context-speci�c feature. �is contrasts our results with past work on
the continued in�uence e�ect, which typically give context-speci�c explanations a central role.24

Simply put, our �ndings underscore that “information about information” need not be treated the
same as equivalent “direct information.”

In the process of illustrating that retractions are in themselves treated as less informative, we
formulated a number of hypotheses relating retraction failures to a number of plausible biases.
Table 7 revisits each of these hypotheses, and assesses our �ndings. Our analysis suggests that
retraction failures are due to di�culties in reasoning particular to information about information—
rendering retractions harder to interpret—and not just an expression of well-known biases. We
also argued that our design is the simplest possible which still enables the desired comparisons in
our two main empirical tests illustrated in Figure 2.

While our main goal in this paper was to document that retractions had a di�erential impact,
and to determine any signi�cant sources of variation, our results point to a number of interesting
potential directions for future work. We see two as being particularly natural.

First, studying what makes information about information more complex. Our experiment
was designed to highlight how errors in information processing contribute to retraction failures.
Beyond the tests suggested by our theoretical framework, the richness a�orded to us by variation
in signal timing allowed us to speak to our proposed mechanism, without altering the fundamental
nature of the task at hand. Indeed, equipped with the �ndings of this paper, one may elucidate
richer pa�erns concerning cognitive noise in information about information. In particular, our
results point toward the need for theoretical models of costly information processing to treat
information about information di�erently from direct information. We consider this to be not
only of independent theoretical interest, but also of practical importance in understanding how to
correct misinformation and improve information transmission more generally.

Second, exploring how information-provision strategies a�ect belief updating from retractions.
In many se�ings—such as in the interplay between politicians and media outlets or �rms and
�nancial auditors—the information receivers obtain results from the strategic interplay between
senders and third parties that fact-check their messages (e.g. Levkun, 2021). While our results
24�ese include political information (Lewandowsky et al., 2012; Nyhan and Rei�er, 2010; Nyhan, 2021; Barrera et al.,

2020), �nancial statements (Grant et al., 2021; Tan and Tan, 2009; Tan and Koonce, 2011), and jury trials (Kassin and
Sommers, 1997; �ompson et al., 1981; Fein et al., 1997). Retractions are also a quintessential part of science: �e
Retraction Watch Database, dedicated to tracking retractions, lists over 35,000 articles, with error and failure to
replicate constituting a signi�cant fraction of the retraction notices (Brainard and You, 2018; Fang et al., 2012).
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Hypothesis Documented (3) or
not detected (5)

1: Subjects (a) fail to fully internalize retractions, and (b) treat retractions as less informa-
tive than equivalent new information

3

2: Updating from retractions takes longer and increases belief variance 3

3: Retractions of more recent evidence (a) are more e�ective, and (b) are faster and induce
lower belief variance

3

4: Following retractions, (a) subjects update less from new observations, and (b) updating
from new observations takes longer and induces greater belief variance

3

5: Similar belief updating biases are present in updating both from new observations and
from retractions

5†

6: Retractions are ine�ective only when subjects have acted on retracted observations 5‡

Table 7: Assessment of Main Hypotheses

Notes: See Section 3 for a more complete description of each hypothesis. † Retractions reverse the direction
of the biases, resulting in under-inference and anti-con�rmation bias. ‡ Null e�ect.

suggest receivers are particularly vulnerable to biased information provision by senders, it is
unclear how belief updating depends on the fact-checking policies employed. In ongoing work
we examine whether beliefs are a�ected by changes in which information is checked, and how. If
only information of a speci�c kind gets checked and retracted—e.g., only articles that challenge
the scienti�c consensus get checked, only political statements supporting speci�c agendas—would
retractions be less e�ective? Additionally, if only corrections are announced—as is the case in many
circumstances—would people correctly infer when retractions render unretracted evidence more
reliable? We believe such results would have substantial practical value, like the ones presented
here.
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Online Appendix for Retractions
A. OMITTED PROOFS

Proof of Proposition 1

Let f : [0, 1] → [0, 1] be a strictly increasing function and ` denote the logit function `(p) =

log(p/(1− p)). From De�nition 1, (` ◦ f−1)(b(θ | St)) = (` ◦ f−1)(b(θ)) +
∑t

j=1K(sj). Now, let
α(τ | St) = P (Retraction of sτ |St,θ=1)

P (Retraction of sτ |St,θ=−1) . With symmetric noise, if signal sτ is retracted, the Bayesian
update should be

P (θ | St, nτ = 1) =
P (θ)K(sτ )

ηt−sτα(τ | St)
P (−θ) + P (θ)K(sτ )ηt−sτα(τ | St)

,

where ηt :=
∑t

`=1 s`. For a retraction, the log-odds update of a Bayesian decisionmaker is
therefore:

` (P (θ | St, nτ = 1)) = ` (P (θ | St))−K(sτ )1[sτ retracted] + log(α(τ | St)). (10)

Notice that α(τ | St) = 1, and hence log(α(τ | St)) = 0, for all verifying retractions. �erefore,
for any τ ∈ {1, . . . , t},

(` ◦ f−1)(b(θ | St, nτ = 1)) = (` ◦ f−1)(b(θ | St))−K(sτ )

= (` ◦ f−1)(b(θ)) +
∑

j∈{1,...,t}

K(sj)−K(sτ )

= (` ◦ f−1)(b(θ)) +
∑

j∈{1,...,t}\τ

K(sj)

= (` ◦ f−1)(b(θ | St \ sτ )).

As (` ◦ f−1) is injective, then b(θ | St, nτ = 1) = b(θ | St \ sτ ).
If, moreover, K(st+1) = −K(sτ ), then it is immediate that (` ◦ f−1)(b(θ | St, nτ = 1)) =

(` ◦ f−1)(b(θ | St ∪ st+1)) and therefore b(θ | St, nτ = 1) = b(θ | St ∪ st+1).
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(1) (2)
lt lt

Prior (lt−1) 0.834∗∗∗ 0.800∗∗∗

(0.037) (0.037)
Signal (st) 1.126∗∗∗ 0.998∗∗∗

(0.071) (0.072)
Signal Con�rms Prior (st · ct) – 0.417∗∗∗

(0.135)
R-Squared 0.41 0.41
Observations 18491 18491
Clustered standard errors at the subject level in parentheses.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 8: Updating from New Observations
Notes: �is table reports updating from new ball draws. �e sample consists of all elicited beliefs of subjects
in the baseline treatment (beliefs elicited each period), excluding those elicited a�er a veri�cation, within
a given round. �e outcome is the log-odds of beliefs in period t, lt. st is the signal in round t (+1 or -1,
multiplied a constant factor of Bayesian updating such that the coe�cient on st would be 1 under Bayesian
updating). ct := 1{sign(lt−1) = sign(st)} denotes whether the signal at t con�rms the prior at t− 1.

B. TABLES AND FIGURES

B.1. Updating from New Observations: Details

In this section, we report standard Grether-style (Grether, 1980) log-odds regressions restricting
the sample to histories in which no retraction occurs, thus enabling a direct comparison to existing
experimental results on belief updating.

Speci�cally, Table 8 shows the following speci�cation, restricted to the cases where there has
not been a retraction (so only new observations):

lt = β0 + β1 · lt−1 + β2 · st ·K (11a)

and lt = β0 + β1 · lt−1 + β2 · st ·K + β3 · st ·K · ct (11b)

where t is the period, lt is the log-odds of the beliefs reported at t, st is the signal in round t (+1
or -1), ct := 1{sign(lt−1) = sign(st)} is an indicator function that equals 1 when the signal at t
con�rms the prior at t−1, and K > 0 is a constant factor of Bayesian updating (the log-likelihood
of the signal).
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In the above regression, a Bayesian decisionmaker would exhibit a coe�cient β2 = 1. Benjamin
(2019) notes that this tends not to be the case: for the two incentivized studies with sequential
observations he reviews, the estimated coe�cient is .528. �aler (2021) provides evidence that
subjects overinfer (resp. underinfer) from signals in similar symmetric environments whenever
P (st = θ | θ) ≥ 1/2 is below (resp. above) approximately 3/5, coinciding with our parameters in
the experimental design.

In the most parsimonious of our speci�cations, we β̂2 = 1.126, indicating mild over-inference
from new observations, although not statistically di�erent from 1 (p-value = .0762). Once we
include the e�ect of con�rmatory information, the coe�cient becomes virtually equal to 1 (p-value
= .976), while β3 > 0 (p-value< .001). �is overinference from con�rmatory information—that is,
β2 + β3 > 1 (p-value = .0018)—has been previously documented (e.g. Charness and Dave, 2017).
Together, this suggests our subjects slightly over-react to new observations but that this is mostly
driven by con�rmation bias: they update more from a signal when the belief movement is in the
direction of their prior. We also verify another deviation from Bayesian updating identi�ed in
the literature: subjects exhibit base-rate neglect. In other words, they underweight the prior, as
evidenced by β1 < 1.

To summarize, in our analysis of this data, we do not �nd any signi�cant departures from
existing literature on belief updating: while subjects depart from Bayesian updating, they do so in
a way consistent with what one would expect from the literature. In Online Appendix B.5.1, we
reestimate the speci�cations in Table 8 using probability weights so as to render di�erent histories
equally likely. Not only do the conclusions remain unchanged, the estimates are extremely similar.
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B.2. Updating from Retractions: by Bayesian Posterior
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Figure 5: Retractions are Ine�ective: Beliefs (Hypothesis 1)
Notes: �e �gure compares mean reported beliefs, disaggregated by histories conducive to the same Bayesian
posterior. Blue circles denote mean reported beliefs, for period 1 and 2 histories inducing a given Bayesian
posterior. Green triangles denote mean reported beliefs following a new observation, for period 3 and 4
histories inducing a given Bayesian posterior. Magenta triangles denote mean reported beliefs following a
retraction, for period 3 and 4 histories inducing a given Bayesian posterior. Triangles pointing up (resp.
down) indicate that the last signal was +1 (resp. -1).
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B.3. Comparisons of Belief Reports to Bayesian Posteriors
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Figure 6: Reported Beliefs and Bayesian Posteriors
Notes: �e �gure compares mean reported beliefs with Bayesian posteriors. Histories and belief reports are
symmetrized around 50, e.g. history BB is treated as Y Y and b|BB is treated as 100− b|Y Y . �e sample
is restricted to the baseline treatment and to histories in which no observation is retracted. �e whiskers
denote 95% con�dence intervals using standard errors clustered at the subject level.
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(a) Di�erence with respect to Bayesian Posterior
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Figure 7: Distribution of Reported Beliefs

Notes: �e �gure shows the distribution of the the di�erence (a) and the absolute di�erence (b) of reported
beliefs and Bayesian posteriors. �e sample is restricted to histories in which no observation is retracted.

B.4. Sample Characteristics

(1) (2) (3)
All Single-Elicitation Baseline Treatment

Number of Subjects 419 204 215
Age 38.58 39.52 37.66

(15.66) (19.84) (10.06)
Female 0.40 0.40 0.40
High School 0.11 0.11 0.10
College 0.21 0.23 0.19
Bachelor’s or equivalent 0.45 0.41 0.49
Postgrad or equivalent 0.18 0.19 0.18
Other Education level 0.05 0.05 0.04
Answered all numeracy questions correctly 0.57 0.55 0.59
Total score on numeracy measures 1.74 1.79 1.69

(1.01) (1.00) (1.02)

Table 9: Sample Characteristics
Notes: �is table provides a comparison of the socio-demographic characteristics of the subjects in our
sample. Column (1) considers all subjects and columns (2) and (3) provide summary statics by treatment.
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B.5. Robustness Checks

B.5.1. Tables 8 and 5 with Probability Weights

In contrast to Tables 8 and 5, Tables 10 and 11 weight observations so as to make histories equally
likely. We note that our conclusions remain the same.

We weight histories of observations according to the relative frequency of the associated
permuted sign history within the respective period and taking into account whether or not a
retraction occurred. �is ensures that observations in each period are made to count equally
toward the estimation, and that relative likelihood of permuted sign histories is rendered the same
regardless of whether a retraction occurred or not.

(1) (2)
lt lt

Prior (lt−1) 0.880∗∗∗ 0.817∗∗∗

(0.050) (0.052)
Signal (st) 1.385∗∗∗ 1.054∗∗∗

(0.088) (0.085)
Signal Con�rms Prior (st · ct) – 0.828∗∗∗

(0.179)
R-Squared 0.47 0.47
Observations 18491 18491
Clustered standard errors at the subject level in parentheses.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 10: Updating from New Draws; with frequency-weighted observations
Notes: �is table reports updating from new ball draws. It re-estimates the speci�cations in Table 8, under
the same conditions, but using inverse frequency weights.
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All Periods Period 3
(1) (2) (3) (4)
lt lt lt lt

Prior (lt−1) 0.895∗∗∗ 0.817∗∗∗ 0.949∗∗∗ 0.840∗∗∗

(0.054) (0.058) (0.064) (0.067)
Signal (st) 1.552∗∗∗ 1.085∗∗∗ 2.143∗∗∗ 1.515∗∗∗

(0.106) (0.103) (0.194) (0.250)
Signal Con�rms Prior (st · ct) – 1.083∗∗∗ – 1.209∗∗∗

(0.222) (0.389)
Retraction (rt) -0.040 -0.032 -0.030 -0.017

(0.028) (0.028) (0.047) (0.048)
Retraction x Prior (rt · lt−1) -0.020 0.068 -0.140∗∗ -0.003

(0.059) (0.065) (0.067) (0.067)
Retracted Signal (rt · st) -1.167∗∗∗ -0.622∗∗∗ -1.785∗∗∗ -1.031∗∗∗

(0.126) (0.125) (0.210) (0.262)
Retraction x Signal Con�rms Prior (rt · st · ct) – -1.275∗∗∗ – -1.550∗∗∗

(0.246) (0.384)
R-Squared 0.50 0.51 0.44 0.44
Observations 22578 22578 6081 6081
Clustered standard errors at the subject level in parentheses.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 11: Similar Updating Biases (Hypothesis 5); with frequency-weighted observations
Notes: �is table tests whether biases in belief updating are di�erent when updating from retractions. It
re-estimates the speci�cations in Table 5, under the same conditions, but using inverse frequency weights.

B.5.2. Log Odds

In this section, we re-estimate the main speci�cations in the paper, but using log-odds beliefs as
the dependent variable instead.
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Prior vs. Retraction New Draw vs. Retraction
(1) (2) (3) (4)
lt lt ∆lt ∆lt

Retraction (rt) 0.005 -0.015 -0.044∗ -0.043
(0.023) (0.034) (0.025) (0.029)

Retracted Signal (rt · st) -0.233∗∗∗ -0.235∗∗∗ -0.249∗∗∗ -0.276∗∗∗

(0.039) (0.050) (0.046) (0.048)
Signal (st) – – – 0.668∗∗∗

(0.055)
Compressed History FEs Yes No No No
Sign History FEs No Yes Yes No
Lagged Sign History FEs No No No Yes
R-Squared 0.26 0.26 0.14 0.14
Observations 22578 22578 22578 9074
Clustered standard errors at the subject level in parentheses.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 12: Retractions are Ine�ective (Hypothesis 1); Log-odds
Notes: �is table tests whether retractions return beliefs to what they would have been had the retracted
observation never been observed, and compares their e�ectiveness relative to new direct information. It
re-estimates the speci�cations in Table 1, under the same conditions, but utilizing log-odds beliefs rather
than beliefs in levels. Log-odds beliefs winsorized at 100-e and e, with e = .1. �e results are robust to
changing the winsorization threshold.

B.5.3. Comprehension�estions Correct at First Try

In this section, we re-estimate the main speci�cations in the paper, but restricting to subjects who
correctly answered all the comprehension questions at �rst try.

Figure 8 shows the proportion of subjects who successfully answered the comprehension
questionnaire by the n-th try and compares this with the case in which they would be choosing
uniformly at random. In particular, we take the case of a sophisticated randomizer that understands
which questions were incorrect and only randomizes among the ones that were not revealed
incorrect.
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Figure 8: Comprehension �estions

Notes: �e comparison is to the case in which subjects randomize uniformly over answers that were not
previously tried and only in questions that were marked wrong.

Prior vs. Retraction New Draw vs. Retraction
(1) (2) (3) (4)
bt bt ∆bt ∆bt

Retraction (rt) 0.276 -0.003 0.071 0.162
(0.305) (0.331) (0.349) (0.362)

Retracted Signal (rt · st) -3.522∗∗∗ -4.129∗∗∗ -3.779∗∗∗ -3.549∗∗∗

(0.724) (0.778) (0.762) (0.760)
Signal (st) – – – 9.712∗∗∗

(0.502)
Compressed History FEs Yes No No No
Sign History FEs No Yes Yes No
Lagged Sign History FEs No No No Yes
R-Squared 0.47 0.47 0.27 0.26
Observations 13574 13574 13574 5446
Clustered standard errors at the subject level in parentheses.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 13: Retractions are Ine�ective (Hypothesis 1); Robustness Check 1
Notes: �is table tests whether retractions return beliefs to what they would have been had the retracted
observation never been observed, and compares their e�ectiveness relative to new direct information. It
re-estimates the speci�cations in Table 1, under the same conditions, but restricting the used sample to
subjects who correctly answered all comprehension questions at �rst try.
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Prior vs. Retraction New Draw vs. Retraction
(1) (2) (3) (4)

log(dtt) V(bt | ht) log(dtt) V(bt | ht)
Retraction (rt) 0.061∗∗∗ 102.4∗∗∗ 0.111∗∗∗ 66.2∗∗

(0.018) (18.472) (0.017) (25.756)
Mean Decision Time (secs) 6.049 – 6.049 –
Compressed History FEs Yes Yes No No
Sign History FEs No No Yes Yes
R-Squared 0.02 0.03 0.03 0.03
Observations 13574 1815 13574 1815
Clustered standard errors at the subject level in parentheses.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 14: Retractions are Harder (Hypothesis 2); Robustness Check 1
Notes: �is table tests if retractions induce longer decision times and greater belief variance. It re-estimates
the speci�cations in Table 2, under the same conditions, but restricting the used sample to subjects who
correctly answered all comprehension questions at �rst try.

B.5.4. Correct Belief Reports when Truth Ball is Revealed

In this section, we re-estimate the main speci�cations in the paper, not only restricting to subjects
who correctly answered all the comprehension questions at �rst try, but further remove from the
sample subjects who failed to correctly report beliefs close to 0 or 100 when the truth ball was
revealed. In particular, we remove from the sample any subject who, when state θ is revealed,
failed to report beliefs |bt− θ| ≤ ε. We present the results for ε = .05, but the results are robust to
the choice of small ε.
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Prior vs. Retraction New Draw vs. Retraction
(1) (2) (3) (4)
bt bt ∆bt ∆bt

Retraction (rt) 0.174 -0.399 -0.069 -0.010
(0.327) (0.351) (0.320) (0.306)

Retracted Signal (rt · st) -3.647∗∗∗ -3.897∗∗∗ -3.671∗∗∗ -3.526∗∗∗

(0.763) (0.815) (0.783) (0.791)
Signal (st) – – – 10.434∗∗∗

(0.476)
Compressed History FEs Yes No No No
Sign History FEs No Yes Yes No
Lagged Sign History FEs No No No Yes
R-Squared 0.61 0.62 0.44 0.45
Observations 10263 10263 10263 4119
Clustered standard errors at the subject level in parentheses.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 15: Retractions are Ine�ective (Hypothesis 1); Robustness Check 2
Notes: �is table tests whether retractions return beliefs to what they would have been had the retracted
observation never been observed, and compares their e�ectiveness relative to new direct information. It
re-estimates the speci�cations in Table 1, under the same conditions, but excluding subjects who did not
correctly answer all comprehension questions at �rst try or who did not correctly report beliefs when the
state was revealed.

Prior vs. Retraction New Draw vs. Retraction
(1) (2) (3) (4)

log(dtt) V(bt | ht) log(dtt) V(bt | ht)
Retraction (rt) 0.065∗∗∗ 85.7∗∗∗ 0.115∗∗∗ 60.8∗∗

(0.020) (19.579) (0.019) (27.202)
Mean Decision Time (secs) 5.677 – 5.677 –
Compressed History FEs Yes Yes No No
Sign History FEs No No Yes Yes
R-Squared 0.03 0.03 0.03 0.03
Observations 10263 1378 10263 1378
Clustered standard errors at the subject level in parentheses.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 16: Retractions are Harder (Hypothesis 2); Robustness Check 2
Notes: �is table tests if retractions induce longer decision times and greater belief variance. It re-estimates
the speci�cations in Table 2, under the same conditions, but excluding subjects who did not correctly answer
all comprehension questions at �rst try or did not correctly report beliefs when the state was revealed.
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B.5.5. Noisy Belief Reports

In this section, we re-estimate the main speci�cations in the paper, removing subjects who seem
to be answering randomly.

For this purpose, we consider that the subject makes a mistake when they update their beliefs
in the opposite direction to the signal, i.e. (bt − bt−1) · st < 0. For each subject, we compute
updating mistakes as a fraction of the total number of belief elicitations and, in Figure 9, we show
the distribution of the individual-level mistakes by robustness check. It is immediate that the
previous robustness checks do reduce the fraction of subjects who seem to be answering randomly.

Figure 9: Subject-Level Mistakes
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In the following tables, we remove from the sample any subject who updates their beliefs in
the opposite direction to the signal more than x% of the time. We present the results for x = 10%;
the coe�cients are virtually unchanged when considering 5% and 25% instead.
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Prior vs. Retraction New Draw vs. Retraction
(1) (2) (3) (4)
bt bt ∆bt ∆bt

Retraction (rt) -0.586∗∗ -0.730∗∗ -0.692∗∗ -0.457
(0.286) (0.309) (0.283) (0.279)

Retracted Signal (rt · st) -5.105∗∗∗ -5.912∗∗∗ -5.748∗∗∗ -5.360∗∗∗

(0.726) (0.802) (0.760) (0.766)
Signal (st) – – – 11.896∗∗∗

(0.404)
Compressed History FEs Yes No No No
Sign History FEs No Yes Yes No
Lagged Sign History FEs No No No Yes
R-Squared 0.69 0.70 0.50 0.46
Observations 11772 11772 11772 4732
Clustered standard errors at the subject level in parentheses.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 17: Retractions are Ine�ective (Hypothesis 1); Robustness Check 3
Notes: �is table tests whether retractions return beliefs to what they would have been had the retracted
observation never been observed, and compares their e�ectiveness relative to new direct information. It
re-estimates the speci�cations in Table 1, under the same conditions, but excluding subjects who made
mistakes in more than 10% of the periods.

Prior vs. Retraction New Draw vs. Retraction
(1) (2) (3) (4)

log(dtt) V(bt | ht) log(dtt) V(bt | ht)
Retraction (rt) 0.071∗∗∗ 122.0∗∗∗ 0.133∗∗∗ 102.2∗∗∗

(0.022) (20.368) (0.020) (18.116)
Mean Decision Time (secs) 6.016 – 6.016 –
Compressed History FEs Yes Yes No No
Sign History FEs No No Yes Yes
R-Squared 0.03 0.06 0.04 0.06
Observations 11772 1589 11772 1589
Clustered standard errors at the subject level in parentheses.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 18: Retractions are Harder (Hypothesis 2); Robustness Check 2
Notes: �is table tests if retractions induce longer decision times and greater belief variance. It re-estimates
the speci�cations in Table 2, under the same conditions, but excluding subjects who made mistakes in more
than 10% of the periods.
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B.5.6. Sampling with or without Replacement

In this section, we re-estimate the main speci�cations in the paper, removing subjects who always
report extreme beliefs (above 95 and below 5) when observing three draws of the same color.

Prior vs. Retraction New Draw vs. Retraction
(1) (2) (3) (4)
bt bt ∆bt ∆bt

Retraction (rt) 0.273 -0.229 -0.281 -0.153
(0.292) (0.395) (0.385) (0.392)

Retracted Signal (rt · st) -2.722∗∗∗ -3.211∗∗∗ -3.214∗∗∗ -2.792∗∗∗

(0.634) (0.777) (0.708) (0.713)
Signal (st) – – – 7.786∗∗∗

(0.521)
Compressed History FEs Yes No No No
Sign History FEs No Yes Yes No
Lagged Sign History FEs No No No Yes
R-Squared 0.31 0.31 0.16 0.13
Observations 20423 20423 20423 8199
Clustered standard errors at the subject level in parentheses.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 19: Retractions are Ine�ective (Hypothesis 1); Robustness Check 4
Notes: �is table tests whether retractions return beliefs to what they would have been had the retracted
observation never been observed, and compares their e�ectiveness relative to new direct information. It
re-estimates the speci�cations in Table 1, under the same conditions, but excluding subjects report extreme
beliefs when observing three draws of the same color.
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Prior vs. Retraction New Draw vs. Retraction
(1) (2) (3) (4)

log(dtt) V(bt | ht) log(dtt) V(bt | ht)
Retraction (rt) 0.046∗∗∗ 119.4∗∗∗ 0.102∗∗∗ 70.7∗∗∗

(0.017) (22.190) (0.016) (23.199)
Mean Decision Time (secs) 6.759 – 6.759 –
Compressed History FEs Yes Yes No No
Sign History FEs No No Yes Yes
R-Squared 0.01 0.02 0.02 0.02
Observations 20423 2740 20423 2740
Clustered standard errors at the subject level in parentheses.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 20: Retractions are Harder (Hypothesis 2); Robustness Check 4
Notes: �is table tests if retractions induce longer decision times and greater belief variance. It re-estimates
the speci�cations in Table 2, under the same conditions, but excluding subjects report extreme beliefs when
observing three draws of the same color.
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B.5.7. Decision Time Controlling Across Rounds

Prior vs. Retraction New Draw vs. Retraction
(1) (2)

log(dtt) log(dtt)
Retraction (rt) 0.068∗∗ 0.114∗∗∗

(0.027) (0.027)
Round -0.013∗∗∗ -0.013∗∗∗

(0.001) (0.001)
Retraction (rt) x Round -0.001 -0.001

(0.001) (0.001)
Mean Decision Time 6.674 6.674
Compressed History FEs Yes No
Sign History FEs No Yes
R-Squared 0.05 0.06
Observations 22578 22578
Clustered standard errors at the subject level in parentheses.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 21: Retractions are Harder (Hypothesis 2a): Decision Time Controlling for Round
Notes: �is table tests if retractions induce longer decision times. Under the same conditions, it re-estimates
the speci�cations in Table 2 pertaining to decision time (columns (1) and (3) therein), but controlling for
the round number. �is serves as a robustness check to understand whether the e�ect of retractions on
decision time fades away as subjects become more experienced.
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B.5.8. Belief Variance by History

(1) (2) (3) (4)

Permuted Compressed History Retraction Prior Di�erence

B 17.54 15.34 2.21∗∗∗

Y 16.91 14.20 2.71∗∗∗

BB 23.51 17.41 6.10∗∗∗

YB 18.30 13.76 4.54∗∗∗

YY 20.59 16.31 4.27∗∗∗

Permuted Sign History Retraction New Draw Di�erence

YBB 17.54 17.14 0.41∗

YYB 16.91 14.96 1.95∗∗∗

YBBB 23.51 23.45 0.05
YYBB 18.30 15.20 3.09∗∗∗

YYYB 20.59 21.50 -0.91

Table 22: Retractions are Harder (Hypothesis 2b): Belief Variance by History
Notes: �is table tests if retractions induce greater belief variance. Each row tests for equality of variance of
belief reports conditional on permuted compressed/sign histories and on whether or not a retraction was
observed using Levene’s test centered at the median. �e columns (2) and (3) indicate the sample estimate
of standard deviation of belief reports conditional on permuted compressed/sign histories and on whether
a retraction occurred that period (column (2)) or not column (3). Column (4) shows the di�erence in sample
standard deviations and indicates whether or not it is signi�cant according to the outcome of Levene’s test.

B.6. Heterogeneous E�ects

B.6.1.�antitative Ability

In this section, we test for the existence of heterogeneous treatment e�ects relative to the subjects
quantitative ability. In the last part of our experiment, we posed three multiple-choice quanti-
tative questions. �e median number of correct answers per subject was two. We expand our
speci�cations by interacting all the regressors with a dummy variable that equals 1 if the subject
answered all questions correctly and 0 if otherwise.

18



Prior vs. Retraction New Draw vs. Retraction
(1) (2) (3) (4)
bt bt ∆bt ∆bt

Retraction (rt) 0.353 0.008 -0.408 -0.309
(0.347) (0.436) (0.444) (0.484)

Retracted Signal (rt · st) -2.958∗∗∗ -3.483∗∗∗ -4.294∗∗∗ -3.038∗∗∗

(0.779) (0.887) (0.795) (0.890)
Signal (st) – – – 7.821∗∗∗

(0.659)
All correct -1.273∗∗∗ -1.278∗∗∗ -0.497∗∗∗ -0.586∗

(0.406) (0.407) (0.170) (0.340)
Retraction (rt) x All correct -0.531 -0.643 0.213 0.257

(0.489) (0.475) (0.534) (0.600)
Retracted signal (rt · st) x All correct -0.644 -0.536 2.129∗∗ -0.975

(1.098) (1.095) (0.983) (1.224)
Signal (st) x All correct – – – 3.033∗∗∗

(0.868)
Compressed History FEs Yes No No No
Sign History FEs No Yes Yes No
Lagged Sign History FEs No No No Yes
R-Squared 0.34 0.34 0.18 0.16
Observations 22578 22578 22578 9074
Clustered standard errors at the subject level in parentheses.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 23: Retractions are Ine�ective (Hypothesis 1); Heterogeneous E�ects
Notes: �is table tests whether retractions return beliefs to what they would have been had the retracted
observation never been observed, and compares their e�ectiveness relative to new direct information. We
investigate the existence of heterogeneous e�ects with respect to quantitative ability by expanding our
baseline speci�cations from Table 1 with interaction terms. ‘All correct’ denotes a dummy variable that
equals 1 when the subject answered all quantitative questions correctly, and 0 if otherwise.
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B.6.2. Subject-Level Estimates

Prior vs. Retraction New Draw vs. Retraction
(1) (2) (3) (4)
bt bt ∆bt ∆bt

Mean -3.285 -3.727 -3.892 -3.448
Median -2.103 -2.602 -2.797 -3.236
Fraction Coe� < 0 0.68 0.71 0.73 0.72
Mean std error 2.867 3.77 4.294 4.777
Compressed History FEs Yes No No No
Sign History FEs No Yes Yes No
Lagged Sign History FEs No No No Yes

Table 24: Retractions are Ine�ective (Hypothesis 1); Subject-Level Estimates
Notes: �is table provides summary statistics on distribution of subject-level estimates of the coe�cient of
interest in the main speci�cation of interest in this paper. We investigate the existence of individual-level
heterogeneity by estimating the speci�cations in Table 1 for each subject. �e sample consists of subjects in
the baseline treatment (beliefs are elicited each period) who observed at least 8 retractions in the 32 rounds.
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C. INSTRUCTIONS AND SCREENSHOTS

C.1. Start Screen and Instructions

Below are screenshots of the start screen and the instructions as presented to the subjects.

WELCOME!
After you start the experiment, please focus and avoid multitasking or taking breaks.

This is very important for our research.

Please settle in and click the Start button to continue with the instructions.

Next

Debug info

Basic info

ID in group 1

Group 1

Round number 1

Participant P1

Participant label

Session code lkd3li17
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Outline
You are about to participate in an experiment on the economics of decision-making. In the experiment you can earn up to $12.50 if you
do well, which will be paid to you at the end of the experiment.

You will begin, on the next screen, with the instructions. Please read them carefully.

At the end of the instructions there will be questions to check that you understand how the experiment works. Upon answering these
questions correctly, you will proceed to the experiment.

The experiment contains 32 rounds, and we expect it to take shorter than one hour to complete. Your payment will depend on your
performance in the experiment. The goal of the experiment is to study how people process new information.

Before the experiment begins there will be two practice rounds for you to familiarize yourself with the interface. After the experiment,
the final part of the task is a brief survey.

You will be guaranteed a payment of $6.00 by completing the experiment, of which $2.00 will be paid immediately afterwards and
$4.00 paid together with the bonus. In addition to this, you can get a bonus of $6.00, which depends on your performance.

We estimate an average hourly payment of above $9.00.

'Bot'-Detection
This task is designed for humans and cannot be fulfilled using automated answers.

You will be asked to prove you are complying with this requirement
by transcribing words at random points in this task. The text will be
as legible as the text in these instructions. Any human able to read this text will be able to read the words for transcription, but a 'bot'
will not. You will be allowed 3 attempts and 2 minutes per attempt. If you fail to transcribe a word three times, the task will be
immediately terminated and you will
automatically get no payment. You will not be able to perform the task again.

Quitting the Task
You can quit the task at any time. However, if you do so, the task is immediately terminated and you will automatically get no payment.
You will not be able to perform the task again.

Additional Information
In the experiment you will answer questions which ask you to choose between different options. Your responses to this experiment will
be used to study how people process information.
No identifying data about you will be made available and all data we store will be
anonymized. All data and published work resulting from this experiment will maintain your individual privacy.
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Instructions
Welcome!

In the experiment you will be asked to estimate the probability that a given ball in a box is blue or yellow.


The experiment is divided into 32 rounds, each round with up to 4 periods, plus two practice rounds before you start for
you to get familiar with the interface.


We expect the overall experiment to last for less than 1 hour, although you are free to move at your own pace.


We also expect that, with an adequate amount of effort, participants get on average $9.00, of which $6.00 depends only
on completing the task.

Truth Balls and Noise Balls
At the beginning of each round, 5 balls are put inside a box.

The balls in that box are of two kinds:

4 Noise Balls N , of which 2 are yellow N  and 2 are blue N ; and

1 Truth Ball T , which can be either yellow T  or blue T .

Your task is to estimate the probability that the Truth Ball T  is yellow T  or blue T , upon observing random draws
from the selected box in each round.

Your Task

A Round

At the beginning of each round, the Truth Ball T  is chosen to be either T  or T
with equal probability.


The Truth Ball T  is then put inside the box with all 4 Noise Balls, 2 N  and 2 N
.

All balls remain inside the box throughout the round.

The round lasts for 4 periods, each of which may help you to guess the color of the

Truth Ball T .

Note that the Truth Ball remains the same throughout the round but changes across different rounds.

This means that the draws you observe from a particular round are not helpful to estimate the color of a Truth Ball in
another round and every round you need to start afresh.

Periods 1 and 2

In periods 1 and 2, a ball is drawn from the box at random and you are told its color, 

 or .


The ball is then placed back into the box.



You will not be told whether it is a Noise Ball N  or the Truth Ball T . Because of

this, the ball will be labelled with a question mark ? .



Since the balls are drawn at random, the drawn ball ? :

is the Truth Ball T  with 20% probability;

is a Noise Ball N  with 80% probability.

Naturally, the more draws you observe, the more likely that one of them is the Truth Ball, and the more balls of one color
you observe, the more likely it is that the Truth Ball is of that color.
However, because in each period the ball you are
shown is placed back into the box, it can be that you are shown the Truth Ball multiple times or even that you are only
shown Noise Balls.
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This is an example of what you can see at period 1:


Periods 3 and 4

At the beginning of period 3, a coin is flipped, and

(i) with 50% probability it lands heads and you will observe a new draw from the box;
(ii) with 50% probability it lands tails and you will observe a validation, learning whether one of the balls is a Noise
Ball or the Truth Ball.

(i) New Draw

If you get a new draw, it will be exactly as before: a ball is drawn from the box and its color is shown to you, but not
whether it is the Truth Ball or the Noise Ball.



Since the balls are drawn at random, the drawn ball ? :

is the Truth Ball T  with 20% probability;

is a Noise Ball N  with 80% probability.

This is an example of what you can see if you get a new draw in period 3:


(ii) Validation

If you get a validation

one of the ?  draws is chosen at random with equal probability, regardless of whether they were draws of the Truth

T  or Noise N  Balls.

You are then showed whether that draw was a Noise Ball N  or the Truth Ball T  itself.
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This is an example of what you can see if you get a validation in period 3:


New Round

After these 4 periods, a new round begins.



Each round, a new color for the Truth Ball T  is selected the same way and independently.



This means that whether the Truth Ball is T  or T  in one round has no influence on whether the Truth Ball is T  or 

T  in another round. 

It will be clearly indicated when a new round begins.

Estimates

Every period and every round you will be asked to provide your estimate of the probability that the Truth Ball T  is 


yellow T  or blue T .

Unless it is shown to you in a validation, you will not be able to know the color of the Truth Ball for sure, but you will be
able to make inferences based on the draws you have seen.
You will be paid based on how accurate your estimate is.

You can enter your estimate using the slider.

Payment
By completing the experiment, you can secure $6.00 for sure.


You can get a bonus of an additional $6.00 depending on your performance.

At each period, you will receive a number of points which depends on your estimate and on the color of the Truth Ball 

T  in that round.
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The higher the probability you assign to the correct color, the more points you get at each round.

If your estimate in a given period is that the Truth Ball is T  with probability  ( ) and an T  with probability 
 ( ), then you will receive

 points if the Truth Ball is T ; and

 points if the Truth Ball is T .

So if your estimate completely correctly the color of the Truth Ball, you get 100 points and if you estimate completely
incorrectly you get 0 points.

The lower probability you assign to the correct color, the fewer points you receive.

For instance, if you estimate that the Truth Ball is T  with 89% probability and T  with 11% probability, you receive

98.79 points if the Truth Ball is indeed T  and 20.79 if the Truth Ball is instead T .

The points you get determine the probability of you getting the bonus.

In order to determine the probability of you getting the bonus, at the end of the experiment, one of the rounds is picked
randomly with equal probability and, in this round, one of the periods is then chosen randomly, with equal probability.

The points you got = probability of getting the $6.00 bonus. 

This means that if in the selected round/period you have 99.84 points you have 99.84% probability of getting the $6.00
bonus. If you have 36 points you only have 36% probability.

There is, of course, an element of chance in the task, but the more you pay attention, the more you increase the
probability of getting the bonus.

All in all, the implication of the reward rule is straightforward: To maximize your expected earnings, the best thing you

can do in each period is to always report your best estimate of the probability that the Truth Ball is T  or T .

This reward system has been designed to encourage you to provide your best estimates.

Questionnaire
After you have completed all rounds, we will ask you some quantitative reasoning questions, for which you can get an
extra $0.50 in bonus and then generic demographic questions.


We will not be collecting any information that allows us to identify you. 
The data will be anonymized and your MTurk ID will not be available. 
This data will be used for scientific research purposes only.

Only after you answer these questions will the task be completed and we will proceed to implement payments.

Questions
You must answer the following questions correctly before you can proceed.

1. 
There are 32 rounds and each round has up to 4 periods.


 The statement is true. 


 The statement is false. 


2. 
How many Noise Balls are there?


 0 


 1 


 2 


q ×100%

(1 − q) ×100%

100 × (1 − (1 − q)2)

100 × (1 − q2)

26



 3 


 4 


3. 

How many of the Noise Balls are N  and N ?


 1 N  and 3 N  


 3 N  and 1 N  


 2 N  and 2 N  


4. 

It is possible that you see a ?  ball 3 times and the Truth Ball is T .

 The statement is true. 


 The statement is false. 


5. 

Even if in a given round the Truth Ball is T , in the following round the Truth Ball can be either T  or T  with
equal (50% - 50%) probability.

 The statement is true. 


 The statement is false. 


6. 

If a draw you were shown ?  corresponded to a Noise Ball N  then the Truth Ball has to be T  and not T .


 The statement is true. 


 The statement is false. 


7. 

If a draw you were shown ?  corresponded to a Noise Ball N  then the Truth Ball T  may or may not be of a
different color.

 The statement is true. 


 The statement is false. 


Check Answers  


Debug info

vars_for_template

period_2_end_prob 33

period_2_not_end_prob 67

Basic info

ID in group 1

Group 1

C.2. Practice Round

Subjects played had two practice rounds before starting the task. It was explicitly mentioned that
these would not count toward their payment.
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Practice Rounds

You will now play two practice rounds.

These rounds do not count towards your payment.

They are meant for you to familiarize yourself with the interface and the task.

Start Practice Rounds
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Group 1

Round number 1

Participant P1

Participant label

Session code bjy1zfpb

Practice Round 1 of 2

New Round

The truth ball is drawn and placed in the box

Start New Round
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One the page loaded, the slider was blank and only activated once the subjects clicked on it.

Practice Round 1 of 2

Period 1: ?  ball drawn
So far you have seen:

?

The ? draw may have been either a Truth
Ball or a Noise Ball

0% 100%

100% 0%

What is your estimate of the probability that the Truth Ball T  is T  or T ?

The probability that the Truth Ball is T  is

--

 

The probability that the Truth Ball is T  is

--

Instructions

Debug info

vars_for_template

period 1

period_2_end_prob 33

period_2_not_end_prob 67

report_number 1

signals [{'sig': 1, 'info': None}]

validation 0

Basic info
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Practice Round 1 of 2

Period 1: ?  ball drawn
So far you have seen:

?

The ? draw may have been either a Truth
Ball or a Noise Ball

0% 100%

100% 0%

What is your estimate of the probability that the Truth Ball T  is T  or T ?

The probability that the Truth Ball is T  is

38.7%

 

The probability that the Truth Ball is T  is

61.3%

Submit Estimate and Go to Next Period

Instructions

Debug info

vars_for_template

period 1

period_2_end_prob 33

period_2_not_end_prob 67

report_number 1

signals [{'sig': 1, 'info': None}]

validation 0

Basic info

C.3. Captchas

Subjects face �ve di�erent captchas at di�erent rounds. �ey had 3 tries and one minute to submit
for each try. Were they to fail the 3 tries, the task ended and they would not receive any bonus.
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Round 2 of 32

Bot Detection - Attempt 1
Type the following word or phrase into the box below, then press 'Next'. Answers are not case-sensitive.

You have three attempts. If you fail all three attempts, the task will end and you will not be paid.

You have two minutes per attempt.




Next

1:57

Debug info

vars_for_template

attempt 1

image_path 'images/captchas/captcha1.png'
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ID in group 1

Group 4

Round number 4

Participant P1

Participant label

Session code bjy1zfpb

C.4. Rounds

�e rounds were described in Section 4.
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Start the Task

From now on, rounds matter towards your payment.

Start the Task

Debug info

Basic info

ID in group 2

Group 3

Round number 3

Participant P2

Participant label

Session code bjy1zfpb

Round 1 of 32

New Round

The truth ball is drawn and placed in the box

Start New Round
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Participant label

Session code bjy1zfpb
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Round 1 of 32

Period 1: ?  ball drawn
So far you have seen:

?

The ? draw may have been either a Truth
Ball or a Noise Ball

0% 100%

100% 0%

What is your estimate of the probability that the Truth Ball T  is T  or T ?

The probability that the Truth Ball is T  is

--

 

The probability that the Truth Ball is T  is

--

Instructions

Debug info

vars_for_template

period 1

period_2_end_prob 33

period_2_not_end_prob 67

report_number 1

signals [{'sig': 0, 'info': None}]

validation 0

Basic info

C.5. Final Period Elicitation Only

Were the subjects to be in the treatment arm in which beliefs were elicited only at the last period
of each round, the last period would be just as before. In periods in which there was no belief
elicitation, they would observe just the ball draw:
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Round 1 of 32

Period 1: ?  ball drawn
So far you have seen:

?

The ? draw may have been either a Truth
Ball or a Noise Ball

Go to Next Period

Instructions

Debug info

vars_for_template

period 1

period_2_end_prob 33

period_2_not_end_prob 67

report_number 0

signals [{'sig': 0, 'info': None}]

validation 0
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ID in group 2
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Round number 3

Participant P2

Participant label

Session code bjy1zfpb

C.6.�antitative�estions

A�er the main task, the subjects had to answer three questions meant to assess their quantitative
ability; these were incentivized.

Questionnaire - Quantitative
In this task, you will see 3 different questions. For each, you must choose the one you believe is correct. There is only one correct answer
for each. One of these 3 questions will be chosen randomly and with equal probability. If your answer to that question is correct, you will
get an additional $0.50 – conditional on concluding the questionnaire and regardless of other answers or how much you have earned so
far. If your answer to that question is not correct, you get no additional money.

Next

Debug info

Basic info

ID in group 1

Group 1

Round number 1

Participant P1

Participant label

Session code bjy1zfpb

34



Questionnaire - Quantitative
Read each question and choose the answer that you believe is correct.

A picture was reduced on a copier to 90% of its original size and this copy was then reduced by 10%. What percentage of the size of the
original picture was the final copy?

10%

81%

90%

99%

100%

Friends Albert, Bruce and Caroline agree to buy $7 worth of lottery tickets, with Albert contributing $3, Bruce contributing $2 and
Caroline contributing $2. They agree that if they win anything with any of these tickets, the winnings are to be shared out in the same
ratio as their contributions. They win $175. How much does each get?

Albert gets $105, Bruce gets $35 and Caroline gets $35

Albert gets $85, Bruce gets $40 and Caroline gets $40

Albert gets $85, Bruce gets $45 and Caroline gets $45

Albert gets $75, Bruce gets $50 and Caroline gets $50

Albert gets $65, Bruce gets $55 and Caroline gets $55

In order to make 1 liter of stone paint, Navin needs to mix 3 parts (30%) of red paint, 5 parts (50%) of yellow paint and 2 parts (20%) of
blue paint. If Navin has 24 liters of red paint, 40 liters of yellow paint and 6 liters of blue paint, how many liters of stone paint can Navin
make?

6 liters

24 liters

30 liters

120 liters

200 liters

Next

You must answer each question before you can continue.
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C.7. Debrief and Payments

Following the task, we gathered subjects comments, socio-demographic information, and informed
them of the payment they would receive.
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Questionnaire - Comments
If you have any comments for the experimenters running this HIT, please leave them below. This question is optional.

Click 'Next' to complete the task.
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Questionnaire - Socio-Demographics
Please enter your age:

Please state your sex:

Male

Female

What is the HIGHEST LEVEL OF EDUCATION that you COMPLETED in school?

None or Primary Education: Primary School (grades 1-6)

Lower Secondary Education: Middle School or some High School incomplete

Upper Secondary Education: High School

Business, technical, or vocational school AFTER High School

Some college or university qualification, but not a Bachelor

Bachelor or equivalent

Master or Post-graduate training or professional schooling after college (e.g. law or medical school’)

Ph.D or equivalent

Choose the field that best describes your PRIMARY FIELD OF EDUCATION.

Generic

Arts and Humanities

Social Sciences and Journalism

Education

Business, Administration and Law

Computer Science, Information and Communication Technologies

Natural Sciences, Mathematics and Statistics

Engineering, Manufacturing and Construction

Agriculture, Forestry, Fisheries and Veterinary

Health and Welfare

Services (Transport, Hygiene and Health, Security and Other)

Next

You must answer each question before you can continue.
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Payouts

You earned $12.50. 

This consists of the automatic $2.00 payment for completing the HIT, and $10.50 that will be paid to you as a bonus.



Click 'Next' to continue to the comments section. You must do this to complete the task and receive your payment.



Next
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Task Complete

You have completed the HIT. Your completion code is:



9c64c7c9-cbc7-42eb-ad25-d798af4ba97f



Please copy/paste this into the space provided on the initial HIT page. You must do this in order to receive your payment.
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